当前位置: X-MOL 学术Eng. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Shifted Chebyshev collocation of the fourth kind with convergence analysis for the space–time fractional advection-diffusion equation
Engineering with Computers Pub Date : 2020-07-18 , DOI: 10.1007/s00366-020-01092-x
H. Safdari , Y. Esmaeelzade Aghdam , J. F. Gómez-Aguilar

The main purpose of this paper is to design a numerical method for solving the space–time fractional advection-diffusion equation (STFADE). First, a finite difference scheme is applied to obtain the semi-discrete in time variable with convergence order O(τ2-β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(\tau ^{2-\beta })$$\end{document}. In the next, to discrete the spatial fractional derivative, the Chebyshev collocation method of the fourth kind has been applied. This discrete scheme is based on the closed formula for the spatial fractional derivative. Besides, the time-discrete scheme has studied in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{2}$$\end{document} space by the energy method and we have proved the unconditional stability and convergence order. Finally, we solve three examples by the proposed method and the obtained results are compared with other numerical problems. The numerical results show that our method is much more accurate than existing techniques in the literature.

中文翻译:

时空分数阶对流扩散方程的第四类位移切比雪夫搭配收敛分析

本文的主要目的是设计一种求解时空分数阶对流扩散方程(STFADE)的数值方法。首先,应用有限差分方案来获得收敛阶数为 O(τ2-β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \ 的半离散时间变量usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(\tau ^{2-\beta })$$\end{文档}。接下来,为了离散空间分数阶导数,应用了第四类切比雪夫搭配方法。这种离散方案基于空间分数阶导数的封闭公式。除了,时间离散方案已在 L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage 中研究{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{2}$$\end{document} 空间通过能量方法证明了无条件稳定性和收敛顺序。最后,我们用所提出的方法解决了三个例子,并将所得结果与其他数值问题进行了比较。数值结果表明,我们的方法比文献中的现有技术准确得多。
更新日期:2020-07-18
down
wechat
bug