当前位置: X-MOL 学术Arab. J. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computation of Stress Distribution in Hydraulic Horizontal Propeller Turbine Runner Based on Fluid–Structure Interaction Analysis
Arabian Journal for Science and Engineering ( IF 2.6 ) Pub Date : 2020-07-17 , DOI: 10.1007/s13369-020-04727-9
Muhammad Waqas , Naseer Ahmad

In the hydro-turbine operation, the kinetic energy of flowing fluid is converted into mechanical energy. In the turbine operation, fluid induces hydraulic load that not only provides a useful mechanical driving torque on the turbine shaft but also causes deformation in turbine components and stress distribution that might induce a structure failure. Structural failure in turbine component decreases performance as well as increases the maintenance cost of hydro-turbines. In this paper, fluid–structure interaction model is used to investigate the stress distribution and total deformation of hydraulic horizontal propeller turbine runner (HHPTR) with different flow velocities, blade widths and blade wrap angles. The results showed that the effects of blade wrap angles and blade width significantly influence the performance and structural strength of the HHPTR. Maximum turbine performance was observed at blade wrap angle of 100° and blade width of 2 mm. It was also found that the maximum value of equivalent stress near the runner hub is 59.54 MPa at blade wrap angle 100°. Similarly, the maximum value of total deformation in HHPTR is 0.7689 mm near the runner blade edges at blade wrap angle 60°.



中文翻译:

基于流固耦合分析的水力螺旋桨水轮机转轮应力分布计算

在水轮机运行中,流动流体的动能转换为机械能。在涡轮机运行中,流体会产生液压负载,这不仅会在涡轮机轴上提供有用的机械驱动扭矩,还会导致涡轮机组件变形和应力分布,从而可能导致结构故障。涡轮部件的结构故障降低了性能,并增加了水轮机的维护成本。本文采用流固耦合模型研究了不同流速,叶片宽度和叶片包角的水平卧式螺旋桨水轮机转轮(HHPTR)的应力分布和总变形。结果表明,叶片包角和叶片宽度的影响显着影响HHPTR的性能和结构强度。在100°的叶片包角和2 mm的叶片宽度下观察到了最大的涡轮机性能。还发现,在叶片包角为100°时,叶轮毂附近的等效应力最大值为59.54 MPa。类似地,HHPTR中总变形的最大值在叶片包角为60°时靠近叶轮叶片边缘为0.7689 mm。

更新日期:2020-07-18
down
wechat
bug