当前位置: X-MOL 学术Astron. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Gas Giant Planet in the OGLE-2006-BLG-284L Stellar Binary System
The Astronomical Journal ( IF 5.1 ) Pub Date : 2020-07-17 , DOI: 10.3847/1538-3881/ab9cb9
David P. Bennett 1, 2 , Andrzej Udalski 3 , Ian A. Bond 4 , Fumio Abe 5 , Richard K. Barry 1 , Aparna Bhattacharya 1, 2 , Martin Donachie 6 , Hirosane Fujii 7 , Akihiko Fukui 8, 9 , Yuki Hirao 1, 2, 7 , Yoshitaka Itow 5 , Kohei Kawasaki 7 , Rintaro Kirikawa 7 , Iona Kondo 7 , Naoki Koshimoto 1, 2, 9, 10 , Man Cheung Alex Li 6 , Yutaka Matsubara 5 , Shota Miyazaki 7 , Yasushi Muraki 5 , Clment Ranc 1 , Nicholas J. Rattenbury 6 , Yuki Satoh 7 , Hikaru Shoji 7 , Takahiro Sumi 7 , Daisuke Suzuki 7 , Yuzuru Tanaka 7 , Paul J. Tristram 11 , Tsubasa Yamawaki 7 , Atsunori Yonehara 6 , Przemek Mrz 3, 12 , Radek Poleski 3 , Michał K. Szymański 3 , Igor Soszyński 3 , Łukasz Wyrzykowski 3 , Krzysztof Ulaczyk 1, 13
Affiliation  

We present the analysis of microlensing event OGLE-2006-BLG-284, which has a lens system that consists of two stars and a gas giant planet with a mass ratio of $q_p = (1.26\pm 0.19) \times 10^{-3}$ to the primary. The mass ratio of the two stars is $q_s = 0.289\pm 0.011$, and their projected separation is $s_s = 2.1\pm 0.7\,$AU, while the projected separation of the planet from the primary is $s_p = 2.2\pm 0.8\,$AU. For this lens system to have stable orbits, the three-dimensional separation of either the primary and secondary stars or the planet and primary star must be much larger than that these projected separations. Since we do not know which is the case, the system could include either a circumbinary or a circumstellar planet. Because there is no measurement of the microlensing parallax effect or lens system brightness, we can only make a rough Bayesian estimate of the lens system masses and brightness. We find host star and planet masses of $M_{L1} = 0.35^{+0.30}_{-0.20}\,M_\odot$, $M_{L2} = 0.10^{+0.09}_{-0.06}\,M_\odot$, and $m_p = 144^{+126}_{-82}\,M_\oplus$, and the $K$-band magnitude of the combined brightness of the host stars is $K_L = 19.7^{+0.7}_{-1.0}$. The separation between the lens and source system will be $\sim 90\,$mas in mid-2020, so it should be possible to detect the host system with follow-up adaptive optics or Hubble Space Telescope observations.

中文翻译:

OGLE-2006-BLG-284L 双星系统中的气态巨行星

我们展示了对微透镜事件 OGLE-2006-BLG-284 的分析,它的透镜系统由两颗恒星和一颗质量比为 $q_p = (1.26\pm 0.19) \times 10^{- 3}$ 到主要。两颗恒星的质量比为$q_s = 0.289\pm 0.011$,它们的预计间距为$s_s = 2.1\pm 0.7\,$AU,而行星与主星的预计间距为$s_p = 2.2\下午 0.8\,$AU。为了使这个透镜系统具有稳定的轨道,主次星或行星与主星的三维间距必须比这些投影间距大得多。由于我们不知道是哪种情况,该系统可能包括一颗环双星行星或一颗环星行星。因为没有测量微透镜视差效应或镜头系统亮度,我们只能对透镜系统的质量和亮度进行粗略的贝叶斯估计。我们发现宿主恒星和行星质量 $M_{L1} = 0.35^{+0.30}_{-0.20}\,M_\odot$, $M_{L2} = 0.10^{+0.09}_{-0.06}\ ,M_\odot$, and $m_p = 144^{+126}_{-82}\,M_\oplus$, 主星组合亮度的$K$波段星等为$K_L = 19.7^ {+0.7}_{-1.0}$。镜头和源系统之间的间隔将在 2020 年中期达到 $\sim 90\, $mas,因此应该可以通过后续自适应光学或哈勃太空望远镜观测来检测主机系统。而主星组合亮度的$K$波段星等为$K_L = 19.7^{+0.7}_{-1.0}$。镜头和源系统之间的间隔将在 2020 年中期达到 $\sim 90\, $mas,因此应该可以通过后续自适应光学或哈勃太空望远镜观测来检测主机系统。而主星组合亮度的$K$波段星等为$K_L = 19.7^{+0.7}_{-1.0}$。镜头和源系统之间的间隔将在 2020 年中期达到 $\sim 90\, $mas,因此应该可以通过后续自适应光学或哈勃太空望远镜观测来检测主机系统。
更新日期:2020-07-17
down
wechat
bug