当前位置: X-MOL 学术ACS Mater. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Strain-Engineering of Bi12O17Br2 Nanotubes for Boosting Photocatalytic CO2 Reduction
ACS Materials Letters ( IF 9.6 ) Pub Date : 2020-07-17 , DOI: 10.1021/acsmaterialslett.0c00306
Jun Di 1 , Pin Song 1 , Chao Zhu 1 , Chao Chen 1 , Jun Xiong 2 , Meilin Duan 3 , Ran Long 3 , Weiqiang Zhou 4 , Manzhang Xu 1 , Lixing Kang 1 , Bo Lin 1 , Daobin Liu 1 , Shuangming Chen 3 , Chuntai Liu 5 , Huaming Li 2 , Yanli Zhao 4 , Shuzhou Li 1 , Qingyu Yan 1 , Li Song 3 , Zheng Liu 1, 6, 7
Affiliation  

The effect of surface tensile strain on the photocatalysis is an open question. In this work, strain engineering has been demonstrated to promote the performance of photocatalysis by curved 2D materials into nanotubes. The surface atomic tensile strain in the Bi12O17Br2 nanotubes is evidenced by the complementary approaches of HAADF STEM imaging and XAFS, which reveals the refined local atomic arrangement of Bi atoms. The engineered surface atomic tensile strain is found to favors CO2 adsorption and activation, charge separation, and CO desorption, as well as lowers rate-limiting step energy barrier. Compared with the 2D Bi12O17Br2 nanoplates, the tensile strain tuned nanotubes shows 14.4 times increased CO2 photoreduction activity to produce CO, in which the generation rate of CO can arrive 34.5 μmol g–1 h–1. This work offer insights into the relationship between surface tensile strain and CO2 photoreduction behavior at the atomic level and provides an accessible way for designing high-efficiency photocatalysts.

中文翻译:

Bi 12 O 17 Br 2纳米管的应变工程促进光催化CO 2还原

表面张力应变对光催化的影响是一个悬而未决的问题。在这项工作中,已经证明了应变工程可以通过将2D弯曲的材料转变为纳米管来促进光催化性能。HAADF STEM成像和XAFS的互补方法证明了Bi 12 O 17 Br 2纳米管中的表面原子拉伸应变,这揭示了Bi原子的精细局部原子排列。发现工程表面原子拉伸应变有利于CO 2吸附和活化,电荷分离和CO解吸,以及降低限速步骤的能垒。与2D Bi 12 O 17 Br 2相比在纳米板中,拉伸应变调谐的纳米管显示出增加的CO 2光还原活性14.4倍,从而产生CO,其中CO的生成速率可以达到34.5μmolg –1 h –1。这项工作提供了在原子水平上表面拉伸应变与CO 2光还原行为之间关系的见解,并为设计高效光催化剂提供了一种可访问的方法。
更新日期:2020-08-03
down
wechat
bug