当前位置: X-MOL 学术Trans. IMF › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modelling and optimisation of magnetic abrasive finishing process based on a non-orthogonal array with ANN-GA approach
Transactions of the IMF ( IF 1.2 ) Pub Date : 2020-07-03 , DOI: 10.1080/00202967.2020.1776966
S. Ahmad 1 , R. M. Singari 1 , R.S. Mishra 1
Affiliation  

ABSTRACT Magnetic abrasive finishing (MAF) is an advanced precise finishing method that achieves micro-level to nano-level surface roughness. In industries, MAF is highly recommended where zero or negligible post-process surface defects are an obligatory requirement. In the same context, process optimisation is essential for making it commercially viable. This study presents an artificial neural network and genetic algorithm (ANN-GA), a robust modelling and optimisation tool (applicable to any sort of data set orthogonal array design or non-orthogonal array design) that is applied to scrutinise and improve the performance of the magnetic abrasive finishing of stainless steel SS302. In addition, the results from ANN-GA modelling and optimisation have been compared with conclusions drawn from conventionally used Taguchi-ANOVA analysis. An L27 non-orthogonal array design has been opted for as per machining set-up restriction. Abrasive size, voltage, machining gap, and rotational speed were the design variables considered in the present research work. It was found that the parametric design used in this study provides a straightforward, methodical, and proficient method of modelling and optimisation of change of surface roughness or finishing behaviour during the MAF process. Modelling and optimisation done with ANN-GA show a maximum value of (ΔR a)max equal to 0.256 µm, which is 7% better than the result obtained from Taguchi-ANOVA analysis.

中文翻译:

基于ANN-GA方法的非正交阵列磁性磨料精加工工艺建模与优化

摘要 磁性磨料精加工(MAF)是一种先进的精密精加工方法,可实现微米级到纳米级的表面粗糙度。在工业中,强烈建议使用 MAF,其中零或可忽略的后处理表面缺陷是强制性要求。在相同的背景下,工艺优化对于使其具有商业可行性至关重要。本研究提出了一种人工神经网络和遗传算法 (ANN-GA),这是一种稳健的建模和优化工具(适用于任何类型的数据集正交阵列设计或非正交阵列设计),用于审查和改进算法的性能。不锈钢SS302的磁性研磨精加工。此外,ANN-GA 建模和优化的结果已与传统使用的田口方差分析得出的结论进行了比较。根据加工设置限制,选择了 L27 非正交阵列设计。磨料尺寸、电压、加工间隙和转速是本研究工作中考虑的设计变量。发现本研究中使用的参数化设计提供了一种直接、有条理和熟练的方法来建模和优化 MAF 过程中表面粗糙度或精加工行为的变化。使用 ANN-GA 进行的建模和优化显示 (ΔR a)max 的最大值等于 0.256 µm,这比从田口方差分析获得的结果好 7%。发现本研究中使用的参数化设计提供了一种直接、有条理和熟练的方法来建模和优化 MAF 过程中表面粗糙度或精加工行为的变化。使用 ANN-GA 进行的建模和优化显示 (ΔR a)max 的最大值等于 0.256 µm,这比从田口方差分析获得的结果好 7%。发现本研究中使用的参数化设计提供了一种直接、有条理和熟练的方法来建模和优化 MAF 过程中表面粗糙度或精加工行为的变化。使用 ANN-GA 进行的建模和优化显示 (ΔR a)max 的最大值等于 0.256 µm,比从田口方差分析获得的结果好 7%。
更新日期:2020-07-03
down
wechat
bug