当前位置: X-MOL 学术J. Geophys. Res. Atmos. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantifying Regional Surface Energy Responses to Forest Structural Change in Nordic Fennoscandia
Journal of Geophysical Research: Atmospheres ( IF 3.8 ) Pub Date : 2020-07-16 , DOI: 10.1029/2019jd032092
Yogesh Kumkar 1, 2 , Rasmus Astrup 1 , Frode Stordal 2 , Ryan M. Bright 1
Affiliation  

In a climate model, surface energy and water fluxes of the vegetated ecosystem largely depend on important structural attributes like leaf area index and canopy height. For forests, management can greatly alter these attributes with resulting consequences for the surface albedo, surface roughness, and evapotranspiration. The sensitivity of surface energy and water budgets to alterations in forest structure is relatively unknown in boreal regions, particularly in Nordic Fennoscandia (Norway, Sweden, and Finland), where the forest management footprint is large. Here we perform offline simulations to quantify the sensitivity of surface heat and moisture fluxes to changes in forest composition and structure across daily, seasonal, and annual time scales. For the region on average, it is found that broadleaved deciduous forests cool the surface by 0.16 K annually and 0.3 K in the growing season owed to higher year‐round albedo and lower Bowen ratio, yet in some locations the local cooling can be as much as 2.4 K and 3.0 K, respectively. Moreover, fully developed forests cool the surface by 0.04 K annually in our domain owed to higher evapotranspiration, reaching up to 0.4 K locally in some locations, whereas undeveloped forests warm annually by 0.14 K owed to much lower evapotranspiration reaching up to 0.8 K for some locations. If regional forests are ever to be managed for the local climate regulation services that they provide, our results are an important first step illuminating the potential adverse impacts or benefits across space and time.

中文翻译:

量化北欧芬诺斯堪迪亚对森林结构变化的区域表面能响应

在气候模型中,植被生态系统的表面能和水通量在很大程度上取决于重要的结构属性,例如叶面积指数和冠层高度。对于森林来说,管理可以极大地改变这些属性,从而导致地表反照率,表面粗糙度和蒸散量的后果。在北方地区,尤其是北欧森林芬诺斯堪的亚(挪威,瑞典和芬兰)森林管理的足迹很大,地表能量和水预算对森林结构变化的敏感性相对未知。在这里,我们进行离线模拟,以量化地表热量和水分通量对每日,季节性和年度时间尺度内森林组成和结构变化的敏感性。对于该区域,平均而言,发现阔叶落叶林将地表温度降低了0。由于全年反照率较高和Bowen比率较低,因此每年16 K,在生长季节为0.3 K,但是在某些位置,局部冷却分别高达2.4 K和3.0K。此外,由于较高的蒸散量,在我们的领域中,成熟的森林每年使地表温度降低0.04 K,在某些位置局部达到0.4 K,而未开发的森林每年的暖度为0.14 K,这是由于较低的蒸散量使得某些地区的蒸发量高达0.8 K位置。如果要对区域森林进行管理以为其提供的当地气候调节服务,我们的结果将是重要的第一步,阐明跨时空的潜在不利影响或利益。但是在某些位置,局部冷却可能分别高达2.4 K和3.0K。此外,由于较高的蒸散量,在我们的领域中,成熟的森林每年使地表温度降低0.04 K,在某些位置局部达到0.4 K,而未开发的森林每年的暖度为0.14 K,这是由于较低的蒸散量使得某些地区的蒸发量高达0.8 K位置。如果要对区域森林进行管理以为其提供的当地气候调节服务,我们的结果将是重要的第一步,阐明跨时空的潜在不利影响或利益。但是在某些位置,局部冷却可能分别高达2.4 K和3.0K。此外,由于较高的蒸散量,在我们的领域中,成熟的森林每年使地表温度降低0.04 K,在某些位置局部达到0.4 K,而未开发的森林每年的温暖度为0.14 K,这是由于较低的蒸散量使得某些地区的蒸发量高达0.8 K位置。如果要对区域森林进行管理以为其提供的当地气候调节服务,我们的结果将是重要的第一步,阐明跨时空的潜在不利影响或利益。未开发的森林每年蒸发量为0.14 K,这是由于某些地区的蒸散量大大降低,达到了0.8K。如果要对区域森林进行管理以为其提供的当地气候调节服务,我们的结果将是重要的第一步,阐明跨时空的潜在不利影响或利益。未开发的森林每年蒸发量为0.14 K,这是由于某些地区的蒸散量大大降低,达到了0.8K。如果要对区域森林进行管理以为其提供的当地气候调节服务,我们的结果将是重要的第一步,阐明跨时空的潜在不利影响或利益。
更新日期:2020-08-02
down
wechat
bug