当前位置: X-MOL 学术Int. J. Greenh. Gas. Con. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Insights into the direct carbonation of activated lizardite: The identification a poorly reactive amorphous Mg-rich silicate phase
International Journal of Greenhouse Gas Control ( IF 4.6 ) Pub Date : 2020-07-17 , DOI: 10.1016/j.ijggc.2020.103114
K. Rausis , A. Ćwik , I. Casanova

This work aims to shed light on the yet unanswered question regarding the limited carbonation yield of activated lizardite via direct carbonation. Two amorphous Mg-rich silicate phases were identified upon activation. A rapid and complete carbonation of a highly reactive amorphous silicate phase was observed under moderately low pressure and temperature conditions (50−120 °C, 6 bar). Carbonation of this phase yielded to the formation of carbonates and a Si-rich passivating phase. On the other hand, the other amorphous silicate phase remained unaltered upon carbonation, fixing a significant amount of Mg within its disordered structure. The presence of poorly reactive intermediate Mg-rich silicate and Si-rich phases might be responsible for the yet unanswered relatively low carbonation efficiencies obtained via direct carbonation of activated lizardite. These limiting factors are considered to reduce the carbonation yield significantly more than the nucleation of forsterite during thermal activation. Analogous experiments carried with different meta-serpentines yielded the formation of distinct carbonate phases. The different distribution of highly and poorly-reactive amorphous phases among the different activated materials might have played an important role in the accelerated formation of magnesite (which was observed to occur once hydromagnesite formation reached a steady state) and the transformation of nesquehonite to dypingite-like phases.



中文翻译:

对活性蜥蜴石直接碳酸化的见解:鉴定反应性差的非晶态富含Mg的硅酸盐相

这项工作旨在阐明尚未解决的有关通过直接碳酸化法活化的蜥蜴石的碳酸化产率有限的问题。活化后鉴定出两个非晶态的富含Mg的硅酸盐相。在适度的低压和高温条件下(50-120°C,6 bar)观察到了高反应性非晶硅酸盐相的快速完全碳酸化。该相的碳酸化产生碳酸盐和富Si钝化相。另一方面,另一无定形硅酸盐相在碳化后保持不变,将大量的Mg固定在其无序结构内。反应性较差的中间富Mg硅酸盐富相和Si富相的存在可能是由于活性蜥蜴石直接碳化而尚未得到的相对较低的碳化效率的原因。这些限制因素被认为比热活化过程中镁橄榄石的成核作用显着降低了碳化产率。用不同的间蛇纹石进行的类似实验产生了独特的碳酸盐相。高活性和低反应性非晶态相在不同活化材料之间的不同分布可能在加速菱镁矿形成(观察到一旦菱镁矿形成达到稳态后就会发生)以及将菱镁矿转变为锂蒙脱石中起重要作用。像阶段。这些限制因素被认为比热活化过程中镁橄榄石的成核作用显着降低了碳化产率。用不同的间蛇纹石进行的类似实验产生了独特的碳酸盐相。高活性和低反应性非晶相在不同活化材料中的不同分布可能在加速菱镁矿的形成(观察到一旦菱镁矿形成达到稳态后就会发生)以及将菱镁矿转变为锂蒙脱石中起重要作用。像阶段。这些限制因素被认为比热活化过程中镁橄榄石的成核作用明显降低了碳酸化产率。用不同的间蛇纹石进行的类似实验产生了独特的碳酸盐相。高活性和低反应性非晶态相在不同活化材料之间的不同分布可能在加速菱镁矿形成(观察到一旦菱镁矿形成达到稳态后就会发生)以及将菱镁矿转变为锂蒙脱石中起重要作用。像阶段。

更新日期:2020-07-17
down
wechat
bug