当前位置: X-MOL 学术Ships Offshore Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Finite element modelling of load-carrying capacity of concrete-filled unplasticised polyvinyl chloride (UPVC) tubes exposed to marine environment
Ships and Offshore Structures ( IF 2.1 ) Pub Date : 2020-07-16 , DOI: 10.1080/17445302.2020.1794556
P. K. Gupta 1 , V. K. Verma 2
Affiliation  

ABSTRACT

This paper presents a Finite element modelling of the compression process of columns prepared by filling reinforced concrete (R.C.) in unplasticised polyvinyl chloride (UPVC) tubes and exposed to artificial seawater. Total 36 reinforced concrete-filled UPVC tubular (RCFUT) column specimens of length 800 mm are used for modelling. The UPVC tubes having 160, 200 and 225 mm diameters are used as a tube. Along with the RCFUT columns bare RCC columns of identical geometries were also modelled to compare the load-carrying capacity and associated mode of deformation. A few specimens were also tested to find material parameters after keeping them completely submerged in artificial sea water of salt concentration 20 N for a period of six months. Material modelling of UPVC tube was done before exposure to sea water and after exposure to seawater for six months in 20 N solution. The comparison of results shows that degradation in strength and ductility was marginal. The finite element model is validated by comparing the load-displacement curves and modes of failure of tested specimens with simulated ones. It was found that strength and energy absorption of RCFUT specimens were 1.2–1.37 and 2.06–4.03 times that of bare R.C. specimens. It can be concluded that the UPVC tube provides a safety jacket to the encased concrete core and as a result improvement in strength, ductility and energy absorption capacity can be achieved. Finite element simulation can be used as an alternative to physical testing if material parameters are obtained with precision.



中文翻译:

暴露于海洋环境的未填充混凝土的未塑化聚氯乙烯(UPVC)管承载能力的有限元建模

摘要

本文介绍了通过在未塑化的聚氯乙烯(UPVC)管中填充钢筋混凝土(RC)并暴露于人造海水中而制备的柱压缩过程的有限元建模。共使用36个长度为800 mm的钢筋混凝土UPVC管状(RCFUT)柱标本进行建模。具有160、200和225毫米直径的UPVC管用作管。除了RCFUT柱外,还对具有相同几何形状的裸RCC柱进行了建模,以比较其承载能力和相关的变形模式。在将其完全浸入20 N盐浓度的人造海水中六个月后,还测试了一些样品以查找材料参数。在暴露于海水之前以及在20 N溶液中暴露于海水六个月之后,对UPVC管进行了材料建模。结果的比较表明,强度和延展性的下降是很小的。通过将载荷-位移曲线和测试样本的破坏模式与模拟样本进行比较,验证了有限元模型的有效性。结果发现,RCFUT试样的强度和能量吸收是裸露RC试样的1.2到1.37和2.06到4.03倍。可以得出结论,UPVC管为包裹的混凝土芯提供了安全护套,因此可以提高强度,延展性和能量吸收能力。如果精确获得材料参数,则可以使用有限元模拟代替物理测试。结果的比较表明,强度和延展性的下降是很小的。通过将载荷-位移曲线和测试样本的破坏模式与模拟样本进行比较,验证了有限元模型的有效性。结果发现,RCFUT试样的强度和能量吸收是裸露RC试样的1.2到1.37和2.06到4.03倍。可以得出结论,UPVC管为包裹的混凝土芯提供了安全护套,因此可以提高强度,延展性和能量吸收能力。如果精确获得材料参数,则可以使用有限元模拟代替物理测试。结果的比较表明,强度和延展性的下降是很小的。通过将载荷-位移曲线和测试样本的破坏模式与模拟样本进行比较,验证了有限元模型的有效性。结果发现,RCFUT试样的强度和能量吸收是裸露RC试样的1.2到1.37和2.06到4.03倍。可以得出结论,UPVC管为包裹的混凝土芯提供了安全护套,因此可以提高强度,延展性和能量吸收能力。如果精确获得材料参数,则可以使用有限元模拟代替物理测试。通过将载荷-位移曲线和测试样本的破坏模式与模拟样本进行比较,验证了有限元模型的有效性。结果发现,RCFUT试样的强度和能量吸收是裸露RC试样的1.2到1.37和2.06到4.03倍。可以得出结论,UPVC管为包裹的混凝土芯提供了安全护套,因此可以提高强度,延展性和能量吸收能力。如果精确获得材料参数,则可以使用有限元模拟代替物理测试。通过将载荷-位移曲线和测试样本的破坏模式与模拟样本进行比较,验证了有限元模型的有效性。结果发现,RCFUT试样的强度和能量吸收是裸露RC试样的1.2到1.37和2.06到4.03倍。可以得出结论,UPVC管为包裹的混凝土芯提供了安全护套,因此可以提高强度,延展性和能量吸收能力。如果精确获得材料参数,则可以使用有限元模拟代替物理测试。可以得出结论,UPVC管为包裹的混凝土芯提供了安全护套,因此可以提高强度,延展性和能量吸收能力。如果精确获得材料参数,则可以使用有限元模拟代替物理测试。可以得出结论,UPVC管为包裹的混凝土芯提供了安全护套,因此可以提高强度,延展性和能量吸收能力。如果精确获得材料参数,则可以使用有限元模拟代替物理测试。

更新日期:2020-07-16
down
wechat
bug