当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Perovskite‐Based Tandem Solar Cells: Get the Most Out of the Sun
Advanced Functional Materials ( IF 19.0 ) Pub Date : 2020-07-16 , DOI: 10.1002/adfm.202001904
Zhihao Zhang 1, 2, 3 , Zicheng Li 1, 2, 3 , Lingyi Meng 1, 2, 4 , Shui‐Yang Lien 5 , Peng Gao 1, 2
Affiliation  

Tandem solar cells (TSCs) comprising stacked narrow‐bandgap and wide‐bandgap subcells are regarded as the most promising approach to break the Shockley–Queisser limit of single‐junction solar cells. As the game‐changer in the photovoltaic community, organic–inorganic hybrid perovskites became the front‐runner candidate for mating with other efficient photovoltaic technologies in the tandem configuration for higher power conversion efficiency, by virtue of their tunable and complementary bandgaps, excellent photoelectric properties, and solution processability. In this review, a perspective that critically dilates the progress of perovskite material selection and device design for perovskite‐based TSCs, including perovskite/silicon, perovskite/copper indium gallium selenide, perovskite/perovskite, perovskite/CdTe, and perovskite/GaAs are presented. Besides, all‐inorganic perovskite CsPbI3 with high thermal stability is proposed as the top subcell in TSCs due to its suitable bandgap of ≈1.73 eV and rapidly increasing efficiency. To minimize the optical and electrical losses for high‐efficiency TSCs, the optimization of transparent electrodes, recombination layers, and the current‐matching principles are highlighted. Through big data analysis, wide‐bandgap perovskite solar cells with high open‐circuit voltage (Voc) are in dire need in further study. In the end, opportunities and challenges to realize the commercialization of TSCs, including long‐term stability, area upscaling, and mitigation of toxicity, are also envisioned.

中文翻译:

钙钛矿基串联太阳能电池:充分利用阳光

包括堆叠的窄带隙和宽带隙子电池的串联太阳能电池(TSC)被认为是打破单结太阳能电池的Shockley-Queisser极限的最有前途的方法。作为光伏领域的颠覆者,有机-无机混合钙钛矿凭借其可调和互补的带隙,出色的光电性能,成为与其他高效光伏技术串联使用以提高功率转换效率的领先候选人。 ,以及解决方案的可处理性。在这篇综述中,提出了一种观点,该观点严重地扩展了钙钛矿基TSC的钙钛矿材料选择和器件设计的进程,包括钙钛矿/硅,钙钛矿/铜铟镓硒,钙钛矿/钙钛矿,钙钛矿/ CdTe和钙钛矿/ GaAs。 。具有高热稳定性的3电池由于其合适的≈1.73eV带隙和快速提高的效率而被建议作为TSC的顶部子电池。为了最大程度地减少高效TSC的光损耗和电损耗,重点介绍了透明电极,复合层和电流匹配原理的优化。通过大数据分析,迫切需要具有高开路电压(V oc)的宽带隙钙钛矿太阳能电池。最后,还预见了实现TSC商业化的机遇和挑战,包括长期稳定性,面积扩大和毒性缓解。
更新日期:2020-09-18
down
wechat
bug