当前位置: X-MOL 学术Prog. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Perforated two-dimensional nanoarchitectures for next-generation batteries: Recent advances and extensible perspectives
Progress in Materials Science ( IF 33.6 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.pmatsci.2020.100716
Masoud Nazarian-Samani , Safa Haghighat-Shishavan , Mahboobeh Nazarian-Samani , Seyed Farshid Kashani-Bozorg , Seeram Ramakrishna , Kwang-Bum Kim

Abstract In the past decade, nanoperforated graphene (also known as a graphene nanomesh or holey graphene) has attracted considerable research interest worldwide, predominantly because of its superior properties such as superb electronic properties with a tunable band gap, greatly enhanced mass and charge transport, high specific surface area with abundant useful reaction/adsorption sites and functionalities, and excellent magnetic, photocatalytic, and mechanical properties. Considering the most recent research activities, this comprehensive review first concentrates on the characterization and synthesis particulars of chemistry-based strategies for several state-of-the-art 2D holey nanoarchitectures, including holey graphene, nitrogenated holey carbon networks (C2N), holey graphitic carbon nitride (g-C3N4), and carbon nanomeshes, as well as 2D holey metal oxides, nitrides, sulfides, phosphides, hydroxides, selenides, carbides, carbonates, oxyfluorides, and NASICON-type structures. The pros and cons of each method for designing in-plane nanoperforations are also highlighted. Subsequently, we discuss the electrochemical properties for next-generation batteries including Li–O2, Zn–air, Li–CO2, Li–S, Li–Se, Li–SexSy, and K-ion batteries, while comprehensively evaluating all the parameters that help in improving their performance owing to the existence of the introduced in-plane holes. Finally, we emphasize the substantial limitations and challenges to facilitate further research and development. This comprehensive review might provide a directional, prompt guide for the designation and fabrication of additional innovative holey nanostructures for emerging applications.

中文翻译:

用于下一代电池的穿孔二维纳米结构:最新进展和可扩展视角

摘要 在过去的十年中,纳米穿孔石墨烯(也称为石墨烯纳米网或多孔石墨烯)在世界范围内引起了相当大的研究兴趣,主要是因为其优越的性能,例如具有可调带隙的出色电子性能,大大增强的质量和电荷传输,高比表面积,具有丰富的有用反应/吸附位点和功能,以及优异的磁性、光催化和机械性能。考虑到最近的研究活动,这篇综合评论首先集中于几种最先进的二维多孔纳米结构的基于化学的策略的表征和合成细节,包括多孔石墨烯、氮化多孔碳网络 (C2N)、多孔石墨氮化碳(g-C3N4)和碳纳米网,以及二维多孔金属氧化物、氮化物、硫化物、磷化物、氢氧化物、硒化物、碳化物、碳酸盐、氟氧化物和 NASICON 型结构。还强调了设计面内纳米穿孔的每种方法的优缺点。随后,我们讨论了包括 Li–O2、Zn–air、Li–CO2、Li–S、Li–Se、Li–SexSy 和 K 离子电池在内的下一代电池的电化学性能,同时综合评估了所有参数由于引入的面内孔的存在,有助于提高它们的性能。最后,我们强调了促进进一步研究和开发的重大局限性和挑战。这篇全面的评论可能会为新兴应用的额外创新多孔纳米结构的设计和制造提供一个有方向的、及时的指南。
更新日期:2021-02-01
down
wechat
bug