当前位置: X-MOL 学术Med. Biol. Eng. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Combination of "generalized Trotter operator splitting" and "quadratic adaptive algorithm" method for tradeoff among speedup, stability, and accuracy in the Markov chain model of sodium ion channels in the ventricular cell model.
Medical & Biological Engineering & Computing ( IF 3.2 ) Pub Date : 2020-07-16 , DOI: 10.1007/s11517-020-02220-x
Xing-Ji Chen , Ching-Hsing Luo , Min-Hung Chen

The fast hybrid operator splitting (HOS) and stable uniformization (UNI) methods have been proposed to save computation cost and enhance stability for Markov chain model in cardiac cell simulations. Moreover, Chen-Chen-Luo’s quadratic adaptive algorithm (CCL) combined with HOS or UNI was used to improve the tradeoff between speedup and stability, but without considering accuracy. To compromise among stability, acceleration, and accuracy, we propose a generalized Trotter operator splitting (GTOS) method combined with CCL independent of the asymptotic property of a particular ion-channel model. Due to the accuracy underestimation of the mixed root mean square error (MRMSE) method, threshold root mean square error (TRMSE) is proposed to evaluate computation accuracy. With the fixed time-step RK4 as a reference, the second-order GTOS combined with CCL (30.8-fold speedup) for the wild-type Markov chain model with nine states (WT-9 model) or (7.4-fold) for the wild-type Markov chain model with eight states (WT-8 model) is faster than UNI combined with CCL (15.6-fold) for WT-9 model or (1.2-fold) for WT-8 model, separately. Besides, the second-order GTOS combined with CCL has 3.81% TRMSE for WT-9 model or 4.32% TRMSE for WT-8 model more accurate than 72.43% TRMSE for WT-9 model or 136.17% TRMSE for WT-8 model of HOS combined with CCL. To compromise speedup and accuracy, low-order GTOS combined with CCL is suggested to have the advantages of high precision and low computation cost. For high-accuracy requirements, high-order GTOS combined with CCL is recommended.

Graphical abstract



中文翻译:

结合“广义Trotter算子分裂”和“二次自适应算法”方法,在心室细胞模型中钠离子通道的马尔可夫链模型的速度,稳定性和准确性之间进行权衡。

提出了快速混合算子分裂(HOS)和稳定均匀化(UNI)方法,以节省计算成本并增强心脏细胞模拟中马尔可夫链模型的稳定性。此外,Chen-Chen-Luo的二次自适应算法(CCL)与HOS或UNI结合使用可提高速度与稳定性之间的权衡,但不考虑准确性。为了在稳定性,加速度和精度之间折衷,我们提出了一种通用的Trotter算子分裂(GTOS)方法与CCL相结合,而与特定离子通道模型的渐近特性无关。由于混合均方根误差(MRMSE)方法的精度低估,提出了阈值均方根误差(TRMSE)来评估计算精度。以固定的时间步RK4为参考,对于具有九种状态的野生型马尔可夫链模型(WT-9模型),将二阶GTOS与CCL结合(加速30.8倍),对于具有八种状态的野生型马尔可夫链模型(WT)进行组合(7.4倍) -8型)的速度要比UNI与WT-9型的CCL组合(15.6倍)或WT-8型的(1.2倍)更快。此外,二阶GTOS与CCL结合使用时,WT-9模型的TRMSE为3.81%,WT-8模型的TRMSE为4.32%,比WT-9模型的72.43%TRMSE或HOS WT-8模型的136.17%TRMSE更准确。结合CCL。为了降低速度和精度,建议将低阶GTOS与CCL结合使用具有高精度和低计算成本的优点。对于高精度要求,建议将高阶GTOS与CCL结合使用。具有八种状态的野生型马尔可夫链模型(WT-8模型)为4倍),比WT-9模型的UNI结合CCL(15.6倍)或WT-8模型为(1.2倍)更快。分别。此外,二阶GTOS与CCL结合使用时,WT-9模型的TRMSE为3.81%,WT-8模型的TRMSE为4.32%,比WT-9模型的72.43%TRMSE或HOS WT-8模型的136.17%TRMSE更准确。结合CCL。为了降低速度和精度,建议将低阶GTOS与CCL结合使用具有高精度和低计算成本的优点。对于高精度要求,建议将高阶GTOS与CCL结合使用。具有八种状态的野生型马尔可夫链模型(WT-8模型)为4倍),比WT-9模型的UNI结合CCL(15.6倍)或WT-8模型为(1.2倍)更快。分别。此外,二阶GTOS与CCL结合使用时,WT-9模型的TRMSE为3.81%,WT-8模型的TRMSE为4.32%,比WT-9模型的72.43%TRMSE或HOS WT-8模型的136.17%TRMSE更准确。结合CCL。为了降低速度和精度,建议将低阶GTOS与CCL结合使用具有高精度和低计算成本的优点。对于高精度要求,建议将高阶GTOS与CCL结合使用。WT-9模型的TRMSE为81%,WT-8模型的TRMSE为4.32%,比HOS结合CCL的WT-9模型的72.43%TRMSE或WT-8模型的136.17%TRMSE更准确。为了降低速度和精度,建议将低阶GTOS与CCL结合使用具有高精度和低计算成本的优点。对于高精度要求,建议将高阶GTOS与CCL结合使用。WT-9模型的TRMSE为81%,WT-8模型的TRMSE为4.32%,比HOS结合CCL的WT-9模型的72.43%TRMSE或WT-8模型的136.17%TRMSE更准确。为了降低速度和精度,建议将低阶GTOS与CCL结合使用具有高精度和低计算成本的优点。对于高精度要求,建议将高阶GTOS与CCL结合使用。

图形概要

更新日期:2020-07-16
down
wechat
bug