当前位置: X-MOL 学术Exp. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pentagalloyl Glucose (PGG) Partially Prevents Arterial Mechanical Changes Due to Elastin Degradation
Experimental Mechanics ( IF 2.0 ) Pub Date : 2020-07-15 , DOI: 10.1007/s11340-020-00625-1
S N Pavey 1 , A J Cocciolone 1 , A Gutierrez Marty 1 , H N Ismail 1 , J Z Hawes 1 , J E Wagenseil 1
Affiliation  

Elastic fibers are composed primarily of the protein elastin and they provide reversible elasticity to the large arteries. Degradation of elastic fibers is a common histopathology in aortic aneurysms. Pentagalloyl glucose (PGG) has been shown to bind elastin and stabilize elastic fibers in some in vitro studies and in vivo models of abdominal aortic aneurysms, however its effects on native arteries are not well described. Perform detailed studies of the biomechanical effects of PGG on native arteries and the preventative capabilities of PGG for elastin degraded arteries. We treated mouse carotid arteries with PGG, elastase (ELA), and PGG + ELA and compared the wall structure, solid mechanics, and fluid transport properties to untreated (UNT) arteries. We found that PGG alone decreased compliance compared to UNT arteries, but did not affect any other structural or biomechanical measures. Mild (30 s) ELA treatment caused collapse and fragmentation of the elastic lamellae, plastic deformation, decreased compliance, increased modulus, and increased hydraulic conductance of the arterial wall compared to UNT. PGG + ELA treatment partially protected from all of these changes, in particular the plastic deformation. PGG mechanical protection varied considerably across PGG + ELA samples and appeared to correlate with the structural changes. Our results provide important considerations for the effects of PGG on native arteries and a baseline for further biomechanical studies on preventative elastic fiber stabilization.

中文翻译:

五没食子酰葡萄糖 (PGG) 可部分防止因弹性蛋白降解引起的动脉机械变化

弹性纤维主要由蛋白质弹性蛋白组成,它们为大动脉提供可逆的弹性。弹性纤维的降解是主动脉瘤中常见的组织病理学。在一些体外研究和腹主动脉瘤的体内模型中,五没食子酰葡萄糖 (PGG) 已被证明可结合弹性蛋白并稳定弹性纤维,但其对天然动脉的影响尚未得到很好的描述。详细研究 PGG 对天然动脉的生物力学影响以及 PGG 对弹性蛋白退化动脉的预防能力。我们用 PGG、弹性蛋白酶 (ELA) 和 PGG + ELA 处理小鼠颈动脉,并将壁结构、固体力学和流体输送特性与未处理 (UNT) 动脉进行比较。我们发现,与 UNT 动脉相比,单独的 PGG 降低了顺应性,但不影响任何其他结构或生物力学措施。与 UNT 相比,轻度 (30 秒) ELA 治疗导致弹性薄片塌陷和碎裂、塑性变形、顺应性降低、模量增加和动脉壁的水力传导增加。PGG + ELA 处理部分保护了所有这些变化,特别是塑性变形。PGG 机械保护在 PGG + ELA 样品中差异很大,并且似乎与结构变化相关。我们的结果为 PGG 对天然动脉的影响提供了重要的考虑因素,并为进一步的预防性弹性纤维稳定性的生物力学研究提供了基线。与 UNT 相比,动脉壁的顺应性降低、模量增加和水力传导增加。PGG + ELA 处理部分保护了所有这些变化,特别是塑性变形。PGG 机械保护在 PGG + ELA 样品中差异很大,并且似乎与结构变化相关。我们的结果为 PGG 对天然动脉的影响提供了重要的考虑因素,并为进一步的预防性弹性纤维稳定性的生物力学研究提供了基线。与 UNT 相比,动脉壁的顺应性降低、模量增加和水力传导增加。PGG + ELA 处理部分保护了所有这些变化,特别是塑性变形。PGG 机械保护在 PGG + ELA 样品中差异很大,并且似乎与结构变化相关。我们的结果为 PGG 对天然动脉的影响提供了重要的考虑因素,并为进一步的预防性弹性纤维稳定性的生物力学研究提供了基线。PGG 机械保护在 PGG + ELA 样品中差异很大,并且似乎与结构变化相关。我们的结果为 PGG 对天然动脉的影响提供了重要的考虑因素,并为进一步的预防性弹性纤维稳定性的生物力学研究提供了基线。PGG 机械保护在 PGG + ELA 样品中差异很大,并且似乎与结构变化相关。我们的结果为 PGG 对天然动脉的影响提供了重要的考虑因素,并为进一步的预防性弹性纤维稳定性的生物力学研究提供了基线。
更新日期:2020-07-15
down
wechat
bug