当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Ternary Dumbbell Structure with Spatially Separated Catalytic Sites for Photocatalytic Overall Water Splitting
Advanced Science ( IF 15.1 ) Pub Date : 2020-07-14 , DOI: 10.1002/advs.201903568
Bocheng Qiu 1, 2 , Lejuan Cai 1, 2 , Ning Zhang 1, 2 , Xiaoming Tao 3 , Yang Chai 1, 2
Affiliation  

Solar‐driven overall water splitting based on metal sulfide semiconductor photocatalysts remains as a challenge owing to the strong charge recombination and deficient catalytic active sites. Additionally, significant inhibition of back reactions, especially the oxidation of sulfide ions during the photocatalytic water oxidation catalysis, is an arduous task that requires an efficient photogenerated hole transfer dynamics. Here, a ternary dumbbell‐shaped catalyst based on RuO2/CdS/MoS2 with spatially separated catalytic sites is developed to achieve simultaneous production of hydrogen and oxygen under simulated solar‐light without any sacrificial agents. Particularly, MoS2 nanosheets anchored on the two ends of CdS nanowires are identified as a reduction cocatalyst to accelerate hydrogen evolution, while RuO2 nanoparticles as an oxidation cocatalyst are deposited onto the sidewalls of CdS nanowires to facilitate oxygen evolution kinetics. The density functional theory simulations and ultrafast spectroscopic results reveal that photogenerated electrons and holes directionally migrate to MoS2 and RuO2 catalytic sites, respectively, thus achieving efficient charge carrier separation. The design of ternary dumbbell structure guarantees metal sulfides against photocorrosion and thus extends their range in solar water splitting.

中文翻译:

具有空间分离催化位点的三元哑铃结构用于光催化整体水分解

由于强电荷复合和催化活性位点不足,基于金属硫化物半导体光催化剂的太阳能驱动的整体水分解仍然是一个挑战。此外,显着抑制逆反应,特别是光催化水氧化催化过程中硫离子的氧化,是一项艰巨的任务,需要有效的光生空穴传输动力学。在此,开发了一种基于RuO 2 /CdS/MoS 2且具有空间分离的催化位点的三元哑铃形催化剂,以实现在模拟太阳光下同时产生氢气和氧气,而无需任何牺牲剂。特别是,锚定在CdS纳米线两端的MoS 2纳米片被认为是加速析氢的还原助催化剂,而作为氧化助催化剂的RuO 2纳米颗粒沉积在CdS纳米线的侧壁上以促进析氧动力学。密度泛函理论模拟和超快光谱结果表明,光生电子和空穴分别定向迁移到MoS 2和RuO 2催化位点,从而实现有效的载流子分离。三元哑铃结构的设计保证了金属硫化物的光腐蚀,从而扩大了其在太阳能分解水中的应用范围。
更新日期:2020-09-10
down
wechat
bug