当前位置: X-MOL 学术Mater. Today Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Additive manufacturing of soft magnets for electrical machines—A review
Materials Today Physics ( IF 10.0 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.mtphys.2020.100255
T.N. Lamichhane , L. Sethuraman , A. Dalagan , H. Wang , J. Keller , M.P. Paranthaman

Abstract With growing interest in electrification from clean energy technologies, such as wind power and use of pure electric powertrains in various applications, the demand for next-generation, high-performance magnetic materials has risen significantly. Electrical machine design for these applications is facing challenges in terms of meeting very demanding metrics for power densities and conversion efficiencies, thereby motivating the exploration of advanced materials and manufacturing for the next generation of lightweight ultraefficient electric machines. Additive manufacturing (AM), a layer-by-layer three dimensional (3D) printing technology, opens up new venues of improvements for industrial manufacturing of electrical machines via near-net shape printing of complex geometries, reduction of parts count and production lead time, and conservation of expensive critical materials such as rare-earth magnets as well as nanocrystalline and amorphous soft magnetic composites, allowing their use in only critical regions required by desired properties of the printed parts. The magnetic, electrical, thermal, and mechanical properties of the magnetic materials are also greatly influenced by the selection of the AM method. Among the seven major American Standard Testing and Materials-defined standard modes of 3D printing, selective laser melting, fused deposition modeling, and binder jetting technology dominate the AM processing of soft magnetic materials and their integration in electrical machines. In this work, the state of the art in printability and performance characteristics of soft magnetic materials for electric machines is summarized and discussed. The prospects of soft magnetic materials selection in terms of price, printability, weight, and performance of the electrical machines are also discussed. This review highlights the current status of AM of large electrical machines, AM process selection guidelines, hybrid printing technologies, and the associated opportunities and challenges. An emphasis is put on multimaterial processing that is essential for electrical machines. Hybrid printing technologies that combine multiple AM processes with adequate automation and enable simultaneous multimaterials dispensing, real-time quality control, postprocessing, and surface finish with integrated subtractive computer numeric control machining are the requirements for progressing toward the end-user electrical machines.

中文翻译:

电机用软磁铁的增材制造——综述

摘要 随着风力发电等清洁能源技术的电气化以及纯电动动力系统在各种应用中的应用日益受到关注,对下一代高性能磁性材料的需求显着增加。这些应用的电机设计在满足非常苛刻的功率密度和转换效率指标方面面临挑战,从而推动了对下一代轻型超高效电机的先进材料和制造的探索。增材制造 (AM) 是一种逐层的三维 (3D) 打印技术,通过复杂几何形状的近净成形打印、减少零件数量和生产提前期,为电机工业制造的改进开辟了新的途径, 和保护昂贵的关键材料,如稀土磁体以及纳米晶和非晶软磁复合材料,允许它们仅用于打印部件所需特性所需的关键区域。AM方法的选择对磁性材料的磁、电、热和机械性能也有很大影响。在美国标准测试和材料定义的 7 种主要 3D 打印标准模式中,选择性激光熔化、熔融沉积建模和粘合剂喷射技术主导着软磁材料的 AM 加工及其在电机中的集成。在这项工作中,总结和讨论了电机软磁材料的可印刷性和性能特征的最新技术。还讨论了软磁材料选择在价格、印刷适性、重量和电机性能方面的前景。本综述重点介绍了大型电机增材制造的现状、增材制造工艺选择指南、混合印刷技术以及相关的机遇和挑战。重点放在对电机至关重要的多材料加工上。混合打印技术将多个 AM 工艺与适当的自动化相结合,并通过集成的减法计算机数控加工实现同步多材料分配、实时质量控制、后处理和表面光洁度,是向最终用户电机发展的要求。还讨论了电机的性能。本综述重点介绍了大型电机增材制造的现状、增材制造工艺选择指南、混合印刷技术以及相关的机遇和挑战。重点放在对电机至关重要的多材料加工上。混合打印技术将多个 AM 工艺与适当的自动化相结合,并通过集成的减法计算机数控加工实现同步多材料分配、实时质量控制、后处理和表面光洁度,是向最终用户电机发展的要求。还讨论了电机的性能。本综述重点介绍了大型电机增材制造的现状、增材制造工艺选择指南、混合印刷技术以及相关的机遇和挑战。重点放在对电机至关重要的多材料加工上。混合打印技术将多个 AM 工艺与适当的自动化相结合,并通过集成的减法计算机数控加工实现同步多材料分配、实时质量控制、后处理和表面光洁度,是向最终用户电机发展的要求。混合印刷技术,以及相关的机遇和挑战。重点放在对电机至关重要的多材料加工上。混合打印技术将多个 AM 工艺与适当的自动化相结合,并通过集成的减法计算机数控加工实现同步多材料分配、实时质量控制、后处理和表面光洁度,是向最终用户电机发展的要求。混合印刷技术,以及相关的机遇和挑战。重点放在对电机至关重要的多材料加工上。混合打印技术将多个 AM 工艺与适当的自动化相结合,并通过集成的减法计算机数控加工实现同步多材料分配、实时质量控制、后处理和表面光洁度,是向最终用户电机发展的要求。
更新日期:2020-12-01
down
wechat
bug