当前位置: X-MOL 学术Extreme Mech. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanics of nanoscale crumpled graphene measured by Atomic Force Microscopy
Extreme Mechanics Letters ( IF 4.7 ) Pub Date : 2020-07-15 , DOI: 10.1016/j.eml.2020.100873
Shivaranjan Raghuraman , Smit A. Shah , Micah J. Green , Jonathan R. Felts

Crumpling profoundly alters the chemical, electrical, mechanical and tribological properties of 2D materials. Structural deformations at these scales can correlate to the local chemical composition, thereby providing a novel method to tune their properties. In order to leverage the unique characteristics of these compact, high surface area structures, it is crucial to understand the mechanical behavior of crumples at the nanoscale and the effect of chemical composition on the crumpling mechanics. Here, we explore the mechanics of crumpled graphene and graphene oxide nanostructures through force-indentation routines using Atomic Force Microscopy. Crumpled graphene and crumpled graphene oxide show a multi-regime power law force deflection response with exponents ranging between 1.2–2.5. Pushing on the crumpled nano-structures induces both reversible and irreversible energy dissipation, which can be observed through changes in the hysteresis between the loading and unloading curves. Describing folding as a structural transformation passing through a metastable transition state with a finite energy barrier, the total energy imparted during force-indentation routines can be quantitatively related to the energy required to bend monolayer graphene. We also demonstrate that the chemical composition of the crumples can strongly influence the energy dissipation, where crumpled graphene consistently dissipated a smaller amount of energy irreversibly compared to crumpled graphene oxide.



中文翻译:

原子力显微镜测量纳米级石墨烯的力学

皱缩会极大地改变2D材料的化学,电气,机械和摩擦学特性。在这些尺度上的结构变形可以与局部化学成分相关,从而提供一种新颖的方法来调节其性质。为了利用这些紧凑的高表面积结构的独特特性,至关重要的是要了解纳米级皱纹的机械性能以及化学成分对皱纹力学的影响。在这里,我们使用原子力显微镜通过力压痕例程探索了皱缩的石墨烯和氧化石墨烯纳米结构的力学。皱纹石墨烯和皱纹氧化石墨烯表现出多态幂律力偏转响应,指数范围在1.2–2.5之间。推动皱缩的纳米结构会引起可逆和不可逆的能量消散,这可以通过加载和卸载曲线之间的磁滞变化来观察。将折叠描述为通过具有有限能垒的亚稳态过渡态的结构转变,在力压入程序中施加的总能量可以与弯曲单层石墨烯所需的能量定量相关。我们还证明了皱纹的化学成分会极大地影响能量的消散,与皱纹的氧化石墨烯相比,皱纹的石墨烯始终不可逆地耗散较少的能量。将折叠描述为通过具有有限能垒的亚稳态过渡态的结构转变,在力压入程序中施加的总能量可以与弯曲单层石墨烯所需的能量定量相关。我们还证明了皱纹的化学成分会极大地影响能量的消散,与皱纹的氧化石墨烯相比,皱纹的石墨烯始终不可逆地耗散较少的能量。将折叠描述为通过具有有限能垒的亚稳态过渡态的结构转变,在力压入程序中施加的总能量可以与弯曲单层石墨烯所需的能量定量相关。我们还证明了皱纹的化学成分会极大地影响能量的消散,与皱纹的氧化石墨烯相比,皱纹的石墨烯始终不可逆地耗散较少的能量。

更新日期:2020-07-15
down
wechat
bug