当前位置: X-MOL 学术Acta Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Superconducting Cu/Nb nanolaminate by coded accumulative roll bonding and its helium damage characteristics
Acta Materialia ( IF 8.3 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.actamat.2020.07.031
Rui Gao , Miaomiao Jin , Fei Han , Baoming Wang , Xianping Wang , Qianfeng Fang , Yanhao Dong , Cheng Sun , Lin Shao , Mingda Li , Ju Li

Abstract A very broad distribution of microstructural length scales spanning few nm- to the μm-scale has proven effective to achieve exceptional materials properties. Here, we fabricate a Cu/Nb two-phase composite made of a hierarchically layered structure by modifying the conventional accumulative roll bonding (ARB) technique, where fresh Nb sheets are inserted and bonded during a repeated stacking and rolling process. This barcode-like multilayer with a designed hierarchical length scale distribution possesses densely distributed phase boundaries and rich interfacial structures. The composite demonstrates similar superconductivity characteristics as pure Nb, but is 3 × stronger, has theoretically better oxidation resistance, and retains considerable ductility. Under the helium irradiation environment, the unique interfacial structures featuring chemical intermixing zones (3-dimensional) are more immune to the formation of large helium clusters than atomically sharp interfaces (2-dimensional), screening them from radiation damage and improving their long-term mechanical integrity. This work signifies an effective strategy of constructing hierarchical laminates to achieve high-performance materials, which holds promise in fusion and fission energy applications.

中文翻译:

编码累积滚压超导Cu/Nb纳米层压板及其氦损伤特性

摘要 跨越几纳米到微米级的微结构长度尺度分布非常广泛,已被证明可有效实现卓越的材料性能。在这里,我们通过修改传统的累积轧制 (ARB) 技术制造了由分层结构制成的 Cu/Nb 两相复合材料,其中在重复堆叠和轧制过程中插入和粘合新鲜的 Nb 片。这种具有设计的分层长度尺度分布的类似条形码的多层具有密集分布的相边界和丰富的界面结构。该复合材料表现出与纯 Nb 相似的超导特性,但强度高 3 倍,理论上具有更好的抗氧化性,并保持相当大的延展性。在氦辐照环境下,以化学混合区(3 维)为特征的独特界面结构比原子锐利的界面(2 维)更容易形成大型氦团簇,从而防止它们受到辐射损伤并提高它们的长期机械完整性。这项工作标志着构建分层层压材料以实现高性能材料的有效策略,这在聚变和裂变能应用中具有前景。
更新日期:2020-09-01
down
wechat
bug