当前位置: X-MOL 学术Acta Neuropathol. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impairment in dynein-mediated nuclear translocation by BICD2 C-terminal truncation leads to neuronal migration defect and human brain malformation.
Acta Neuropathologica Communications ( IF 7.1 ) Pub Date : 2020-07-14 , DOI: 10.1186/s40478-020-00971-0
Meng-Han Tsai , Haw-Yuan Cheng , Fang-Shin Nian , Chen Liu , Nian-Hsin Chao , Kuo-Liang Chiang , Shu-Fang Chen , Jin-Wu Tsai

During brain development, the nucleus of migrating neurons follows the centrosome and translocates into the leading process. Defects in these migratory events, which affect neuronal migration, cause lissencephaly and other neurodevelopmental disorders. However, the mechanism of nuclear translocation remains elusive. Using whole exome sequencing (WES), we identified a novel nonsense BICD2 variant p.(Lys775Ter) (K775X) from a lissencephaly patient. Interestingly, most BICD2 missense variants have been associated with human spinal muscular atrophy (SMA) without obvious brain malformations. By in utero electroporation, we showed that BicD2 knockdown in mouse embryos inhibited neuronal migration. Surprisingly, we observed severe blockage of neuronal migration in cells overexpressing K775X but not in those expressing wild-type BicD2 or SMA-associated missense variants. The centrosome of the mutant was, on average, positioned farther away from the nucleus, indicating a failure in nuclear translocation without affecting the centrosome movement. Furthermore, BicD2 localized at the nuclear envelope (NE) through its interaction with NE protein Nesprin-2. K775X variant disrupted this interaction and further interrupted the NE recruitment of BicD2 and dynein. Remarkably, fusion of BicD2-K775X with NE-localizing domain KASH resumed neuronal migration. Our results underscore impaired nuclear translocation during neuronal migration as an important pathomechanism of lissencephaly.

中文翻译:

BICD2 C末端截短导致的动力蛋白介导的核易位障碍导致神经元迁移缺陷和人脑畸形。

在大脑发育过程中,迁移神经元的核跟随着中心体,并转移到前导过程中。这些迁徙事件中的缺陷会影响神经元迁移,导致小脑畸形和其他神经发育障碍。但是,核易位的机制仍然难以捉摸。使用全外显子组测序(WES),我们从弱脑病患者中鉴定了一种新型的无意义BICD2变体p。(Lys775Ter)(K775X)。有趣的是,大多数BICD2错义变体都与人类脊髓性肌萎缩症(SMA)有关,而没有明显的脑畸形。通过子宫内电穿孔,我们显示小鼠胚胎中的BicD2敲低抑制了神经元迁移。出奇,我们观察到在过度表达K775X的细胞中神经元迁移受到严重阻滞,但在表达野生型BicD2或SMA相关错义变体的细胞中却没有。平均而言,突变体的中心体的位置离细胞核更远,这表明核转运失败而不影响中心体的运动。此外,BicD2通过其与NE蛋白Nesprin-2的相互作用而定位在核膜(NE)上。K775X变体破坏了这种相互作用,并进一步中断了BicD2和动力蛋白的NE募集。值得注意的是,BicD2-K775X与NE本地化域KASH的融合恢复了神经元迁移。我们的研究结果强调了神经元迁移过程中核易位障碍是轻度脑畸形的重要发病机制。位于远离核的位置,表明核移位失败而不影响中心体运动。此外,BicD2通过其与NE蛋白Nesprin-2的相互作用而位于核膜(NE)处。K775X变体破坏了这种相互作用,并进一步中断了BicD2和动力蛋白的NE募集。值得注意的是,BicD2-K775X与NE本地化域KASH的融合恢复了神经元迁移。我们的研究结果强调了神经元迁移过程中核易位障碍是轻度脑畸形的重要发病机制。位于远离核的位置,表明核移位失败而不影响中心体运动。此外,BicD2通过其与NE蛋白Nesprin-2的相互作用而位于核膜(NE)处。K775X变体破坏了这种相互作用,并进一步中断了BicD2和动力蛋白的NE募集。值得注意的是,BicD2-K775X与NE本地化域KASH的融合恢复了神经元迁移。我们的研究结果强调了神经元迁移过程中核易位障碍是轻度脑畸形的重要发病机制。K775X变体破坏了这种相互作用,并进一步中断了BicD2和动力蛋白的NE募集。值得注意的是,BicD2-K775X与NE本地化域KASH的融合恢复了神经元迁移。我们的研究结果强调了神经元迁移过程中核易位障碍是轻度脑畸形的重要发病机制。K775X变体破坏了这种相互作用,并进一步中断了BicD2和动力蛋白的NE募集。值得注意的是,BicD2-K775X与NE本地化域KASH的融合恢复了神经元迁移。我们的研究结果强调了神经元迁移过程中核易位障碍是轻度脑畸形的重要发病机制。
更新日期:2020-07-14
down
wechat
bug