当前位置: X-MOL 学术Géotechnique › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improvements in plate anchor capacity due to cyclic and maintained loads combined with consolidation
Géotechnique ( IF 4.2 ) Pub Date : 2020-07-14 , DOI: 10.1680/jgeot.19.ti.028
Zefeng Zhou 1 , Conleth D. O'Loughlin 1 , David J. White 2 , Sam A. Stanier 3
Affiliation  

Plate anchor technology is an efficient solution for mooring offshore floating facilities for oil and gas or renewable energy projects. When used with a taut mooring, the anchor is typically subjected to a maintained load component and intermittent episodes of cyclic loading throughout the design life. These loads, and the associated shearing, remoulding and consolidation processes, cause changes in the anchor capacity, particularly in soft, fine-grained soils. The changing anchor capacity affects the mooring performance by changing the safety margin and also the overall system reliability. In this paper the changing anchor capacity in reconstituted, normally consolidated natural carbonate silt was assessed through a series of beam centrifuge tests on horizontally loaded circular plate anchors. The results demonstrate that full consolidation under a typical maintained load leads to a 50% gain in the anchor capacity, and subsequent cyclic loading and reconsolidation can triple this increase. An effective stress framework based on critical state concepts is employed to explain and support the experimental observations. This study shows that, when viewed from a whole-life reliability perspective, maintained and cyclic loading provide a long-term enhancement of anchor capacity in soft, fine-grained soils. This beneficial effect is currently overlooked in design practice, but can be predicted using the framework shown here, which can form the basis for a digital twin that monitors the through-life integrity of a plate anchor.

中文翻译:

由于循环载荷和保持载荷以及固结,提高了板锚的承载能力

板锚技术是在石油和天然气或可再生能源项目中系泊海上浮动设施的有效解决方案。当与拉紧系泊一起使用时,锚通常在整个设计寿命中承受维持的载荷分量和周期性载荷的间歇性发作。这些载荷以及相关的剪切,重塑和固结过程会导致锚固能力的变化,尤其是在软而细颗粒的土壤中。不断变化的锚固能力会通过改变安全裕度以及整个系统的可靠性来影响系泊性能。在本文中,通过在水平加载的圆形板式锚上进行一系列的梁离心试验,评估了重建的,正常固结的天然碳酸盐淤泥中不断变化的锚固能力。结果表明,在典型的保持荷载下完全固结会导致锚固能力提高50%,随后的循环荷载和再固结可以使这种增加增加三倍。基于临界状态概念的有效应力框架用于解释和支持实验观察。这项研究表明,从全寿命可靠性的角度来看,保持荷载和循环荷载可长期改善软质细土中的锚固能力。目前,这种有益效果在设计实践中被忽略,但是可以使用此处显示的框架进行预测,该框架可以构成数字孪生模型的基础,该孪生模型可以监视板锚的使用寿命。后续的循环加载和重新合并可以使这种增加增加三倍。基于临界状态概念的有效应力框架用于解释和支持实验观察。这项研究表明,从全寿命可靠性的角度来看,保持荷载和循环荷载可长期改善软质细土中的锚固能力。目前,这种有益效果在设计实践中被忽略,但是可以使用此处显示的框架进行预测,该框架可以构成数字孪生模型的基础,该孪生模型可以监视板锚的使用寿命。后续的循环加载和重新合并可以使这种增加增加三倍。基于临界状态概念的有效应力框架用于解释和支持实验观察。这项研究表明,从全寿命可靠性的角度来看,保持荷载和循环荷载可长期改善软质细土中的锚固能力。目前,这种有益效果在设计实践中被忽略,但是可以使用此处显示的框架进行预测,该框架可以构成数字孪生模型的基础,该孪生模型可以监视板锚的使用寿命。保持稳定的荷载和循环荷载可长期提高软质细土的锚固能力。这种有益效果目前在设计实践中被忽略,但可以使用此处显示的框架进行预测,该框架可以构成监视孪生锚钉寿命的数字孪生模型的基础。保持稳定的荷载和循环荷载可长期提高软质细土的锚固能力。目前,这种有益效果在设计实践中被忽略,但可以使用此处显示的框架进行预测,该框架可以构成数字孪生模型的基础,该孪生模型可以监视板锚的使用寿命。
更新日期:2020-07-14
down
wechat
bug