当前位置: X-MOL 学术J. Adhes. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Large scale preparation of polyaniline/polyvinyl alcohol hybrid films through in-situ chemical polymerization for flexible electrode materials
Journal of Adhesion Science and Technology ( IF 2.3 ) Pub Date : 2020-07-14 , DOI: 10.1080/01694243.2020.1781352
Anjali Chithrambattu 1 , Yahya A. Ismail 1
Affiliation  

Abstract Flexible electrode materials are inevitable for high-end applications such as wearable electronics, implantable microelectrodes, artificial muscles, various sensors, and biomedical devices. A simple and easy method for large scale preparation of mechanically stable and flexible electrode material using PANI and PVA films is presented. The hybrid films prepared through the chemical coating of PVA using an in-situ chemical polymerization of aniline were highly electroactive and comprised of coral-like nanowires of PANI grown on the surface of PVA films resulting large surface area and high porosity as evinced from SEM studies. FTIR spectra showed characteristic bands of PANI and PVA. Bandgap energies estimated were consistent with the electrical conductivity of the films. The doubly coated film showed an electrical conductivity as high as 4.0 × 10−2 S cm−1. The high electrochemical activity studied through cyclic voltammetry was attributed to the easy diffusion of ions through the porous nanowires of PANI on the surface of the films. Thermal studies revealed that hybrid films are thermally more stable. The tensile strength of the hybrid films was comparable with that of pure PVA film in the dry state while in the wet state the single coated film was mechanically more stable. Sorption studies showed that the mass swelling ratio of the hybrid films was decreased due to the incorporation of PANI into the hydrogel matrix. As the films were mechanically stable and highly electroactive and can be cut into pieces of any desirable size and shape we propose that they can be used as active electrode materials for sensors, supercapacitors, actuators, etc.

中文翻译:

通过原位化学聚合大规模制备聚苯胺/聚乙烯醇杂化薄膜用于柔性电极材料

摘要 柔性电极材料是可穿戴电子产品、可植入微电极、人造肌肉、各种传感器和生物医学设备等高端应用的必然选择。提出了一种使用 PANI 和 PVA 薄膜大规模制备机械稳定和柔性电极材料的简单易行的方法。使用苯胺的原位化学聚合通过 PVA 化学涂层制备的混合薄膜具有高电活性,并且由生长在 PVA 薄膜表面上的珊瑚状 PANI 纳米线组成,从而产生大的表面积和高孔隙率,如 SEM 研究所示. FTIR 光谱显示了 PANI 和 PVA 的特征带。估计的带隙能量与薄膜的导电性一致。双涂层薄膜的电导率高达 4。0 × 10−2 S cm−1。通过循环伏安法研究的高电化学活性归因于离子容易通过薄膜表面的 PANI 多孔纳米线扩散。热研究表明,混合薄膜在热上更稳定。混合薄膜的拉伸强度在干燥状态下与纯 PVA 薄膜相当,而在潮湿状态下,单涂层薄膜在机械上更稳定。吸附研究表明,由于聚苯胺结合到水凝胶基质中,混合膜的质量溶胀比降低。由于薄膜具有机械稳定性和高电活性,并且可以切成任何所需尺寸和形状的碎片,我们建议它们可用作传感器、超级电容器、致动器等的活性电极材料。通过循环伏安法研究的高电化学活性归因于离子容易通过薄膜表面的 PANI 多孔纳米线扩散。热研究表明,混合薄膜在热上更稳定。混合薄膜的拉伸强度在干燥状态下与纯 PVA 薄膜相当,而在潮湿状态下,单涂层薄膜在机械上更稳定。吸附研究表明,由于聚苯胺结合到水凝胶基质中,混合膜的质量溶胀比降低。由于薄膜具有机械稳定性和高电活性,并且可以切成任何所需尺寸和形状的碎片,我们建议它们可用作传感器、超级电容器、致动器等的活性电极材料。通过循环伏安法研究的高电化学活性归因于离子容易通过薄膜表面的 PANI 多孔纳米线扩散。热研究表明,混合薄膜在热上更稳定。混合薄膜的拉伸强度在干燥状态下与纯 PVA 薄膜相当,而在潮湿状态下,单涂层薄膜在机械上更稳定。吸附研究表明,由于聚苯胺结合到水凝胶基质中,混合膜的质量溶胀比降低。由于薄膜具有机械稳定性和高电活性,并且可以切成任何所需尺寸和形状的碎片,我们建议它们可用作传感器、超级电容器、致动器等的活性电极材料。
更新日期:2020-07-14
down
wechat
bug