当前位置: X-MOL 学术Eur. J. Inorg. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Significant Improvement of the Electrochemical Performance of CoO Nanoparticles Through Activating Synergistic Effects by Doping with Nickel
European Journal of Inorganic Chemistry ( IF 2.2 ) Pub Date : 2020-07-14 , DOI: 10.1002/ejic.202000357
Ruoyu Zhou 1, 2 , Xiaofeng Bi 2 , Xizhi Yuan 2 , Ling Zhang 1 , Qingsong Huang 2
Affiliation  

In order to find a more optimized electrode material for supercapacitors, hydrothermally manufactured CoO nanoparticles doped with Ni were prepared in this research, and capacitor electrochemical performances were compared with those of non‐doped CoO nanoparticles. The promoting electrochemical performances of doped CoO nanoparticles were demonstrated by specific capacitance rising significantly from 151.9 F/g of non‐doped one to 279.5 F/g in current density of 1 A/g by galvanostatic charge‐discharge measurements and from 151.9 F/g to 270.6 F/g in cyclic voltammetry experiments with a scan rate of 2 mV/s. Performance of doped CoO particles is proved to be better because of the increased specific surface area, decreasing pore radius distribution, most probable aperture reducing, as well as the more suitable hole longitudinal section features. Moreover, the upgraded electrode material exhibits significant beneficial synergistic effects (both capacitance expansion and Faradaic output steadiness), as well as high capacity retention (106 % after 500 cycling tests). Our findings pave a new way to obtain supercapacitor electrode materials with better electrochemical performance.

中文翻译:

通过掺杂镍激活协同效应,可显着提高CoO纳米颗粒的电化学性能

为了找到一种用于超级电容器的更优化的电极材料,本研究制备了水热制造的掺有Ni的CoO纳米颗粒,并将电容器的电化学性能与未掺杂的CoO纳米颗粒进行了比较。通过恒电流充放电测量,在1 A / g的电流密度下,比电容从151.9 F / g的非掺杂1显着提高到279.5 F / g的掺杂,证明了掺杂CoO纳米粒子的电化学性能。在循环伏安法实验中的最大扫描速率为270.6 F / g,扫描速率为2 mV / s。由于增加的比表面积,减小的孔半径分布,最可能的孔径减小以及更合适的孔纵向截面特征,证明了掺杂的CoO颗粒的性能更好。此外,升级后的电极材料表现出显着的有益协同作用(电容扩展和法拉第输出稳定性),以及高容量保持率(500次循环测试后为106%)。我们的发现为获得具有更好电化学性能的超级电容器电极材料铺平了道路。
更新日期:2020-08-10
down
wechat
bug