当前位置: X-MOL 学术Text. Res. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A dynamic modeling approach for a high-speed winding system with twin-rotor coupling
Textile Research Journal ( IF 1.6 ) Pub Date : 2020-05-09 , DOI: 10.1177/0040517520920949
Xi Hou 1, 2 , Yongxing Wang 1, 3 , Pei Feng 1 , Haiyan Yu 1 , Xunxun Ma 1 , Ge Chen 1
Affiliation  

This paper continues the previous study and presents a dynamic modeling approach for a high-speed winding system. To meet the requirements of high-speed winding, a twin-rotor coupling structure is adopted in the winding system. It is a complex spindle system, due to its high speed, heavy load, frequency-dependent coupling parameters, and time-varying rotational speed. In this paper, an approach to establishing a finite element model of the winding system is proposed to predict its dynamic behavior characteristics during the winding process. First, the spindle and contact roller models of the discrete single component are developed based on Timoshenko beam theory. Bending, transverse shear effects, and gyroscopic moment are considered in the models. The contact stiffness between the contact roller and the packages to be wound on the spindle is simplified by a nonlinear spring. The contact stiffness is identified by dynamics analysis in ANSYS® 17.0. Next, a fully dynamic model of the winding system, which consists of the spindle subsystem, the contact roller, and the flexible coupling elements, is established. Third, the Newmark method is used to develop the program to solve the dynamic equations in MATLAB® 2013b. Finally, the effects of the supporting system and contact state on the winding system's dynamic response are investigated. The results indicate the model of the winding system presented in this paper is suitable for predicting dynamic performance during the winding process.

中文翻译:

双转子耦合高速绕线系统的动态建模方法

本文延续了之前的研究,并提出了一种高速绕线系统的动态建模方法。为满足高速绕线的要求,绕线系统采用双转子耦合结构。它是一个复杂的主轴系统,由于其高速、重负载、频率相关的耦合参数和随时间变化的转速。在本文中,提出了一种建立绕组系统有限元模型的方法,以预测其在绕组过程中的动态行为特征。首先,离散单个组件的主轴和接触滚子模型是基于 Timoshenko 梁理论开发的。模型中考虑了弯曲、横向剪切效应和陀螺力矩。非线性弹簧简化了接触辊和卷绕在锭子上的卷装之间的接触刚度。接触刚度由 ANSYS® 17.0 中的动力学分析确定。接下来,建立了由锭子子系统、接触辊和弹性耦合元件组成的卷绕系统的全动态模型。第三,在MATLAB® 2013b 中使用Newmark 方法开发求解动力学方程的程序。最后,研究了支撑系统和接触状态对绕组系统动态响应的影响。结果表明,本文提出的卷绕系统模型适用于预测卷绕过程中的动态性能。建立了由锭子子系统、接触辊和弹性耦合元件组成的卷绕系统的全动态模型。第三,在MATLAB® 2013b 中使用Newmark 方法开发求解动力学方程的程序。最后,研究了支撑系统和接触状态对绕组系统动态响应的影响。结果表明,本文提出的卷绕系统模型适用于预测卷绕过程中的动态性能。建立了由锭子子系统、接触辊和弹性耦合元件组成的卷绕系统的全动态模型。第三,在MATLAB® 2013b 中使用Newmark 方法开发求解动力学方程的程序。最后,研究了支撑系统和接触状态对绕组系统动态响应的影响。结果表明,本文提出的卷绕系统模型适用于预测卷绕过程中的动态性能。研究了支撑系统和接触状态对绕组系统动态响应的影响。结果表明,本文提出的卷绕系统模型适用于预测卷绕过程中的动态性能。研究了支撑系统和接触状态对绕组系统动态响应的影响。结果表明,本文提出的卷绕系统模型适用于预测卷绕过程中的动态性能。
更新日期:2020-05-09
down
wechat
bug