当前位置: X-MOL 学术Pure Appl. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synthetic models of hydrogenases based on framework structures containing coordinating P, N-atoms as hydrogen energy electrocatalysts – from molecules to materials
Pure and Applied Chemistry ( IF 1.8 ) Pub Date : 2020-09-25 , DOI: 10.1515/pac-2019-1207
Yulia H. Budnikova 1 , Vera V. Khrizanforova 1, 2
Affiliation  

Abstract Nowadays, hydrogen has become not only an extremely important chemical product but also a promising clean energy carrier for replacing fossil fuels. Production of molecular H2 through electrochemical hydrogen evolution reactions is crucial for the development of clean-energy technologies. The development of economically viable and efficient H2 production/oxidation catalysts is a key step in the creation of H2-based renewable energy infrastructure. Intrinsic limitations of both natural enzymes and synthetic materials have led researchers to explore enzyme-induced catalysts to realize a high current density at a low overpotential. In recent times, highly active widespread numerous electrocatalysts, both homogeneous or heterogeneous (immobilized on the electrode), such as transition metal complexes, heteroatom- or metal-doped nanocarbons, metal-organic frameworks, and other metal derivatives (calix [4] resorcinols, pectates, etc.), which are, to one extent or another, structural or functional analogs of hydrogenases, have been extensively studied as alternatives for Pt-based catalysts, demonstrating prospects for the development of a “hydrogen economy”. This mini-review generalizes some achievements in the field of development of new electrocatalysts for H2 production/oxidation and their application for fuel cells, mainly focuses on the consideration of the catalytic activity of M[P2N2]2 2+ (M = Ni, Fe) complexes and other nickel structures which have been recently obtained.

中文翻译:

基于包含配位 P、N 原子的框架结构的氢化酶合成模型作为氢能电催化剂——从分子到材料

摘要 如今,氢不仅是一种极其重要的化工产品,而且是一种很有前景的替代化石燃料的清洁能源载体。通过电化学析氢反应生产分子 H2 对清洁能源技术的发展至关重要。开发经济可行且高效的 H2 生产/氧化催化剂是创建基于 H2 的可再生能源基础设施的关键步骤。天然酶和合成材料的内在局限性促使研究人员探索酶诱导催化剂,以在低过电位下实现高电流密度。近年来,高活性的电催化剂广泛存在,无论是均质的还是异质的(固定在电极上),例如过渡金属配合物、杂原子或金属掺杂的纳米碳、金属有机骨架和其他金属衍生物(杯 [4] 间苯二酚、果胶酸酯等)在某种程度上是氢化酶的结构或功能类似物,已被广泛研究作为 Pt 基催化剂的替代品,展示了发展“氢经济”的前景。本篇小综述总结了在用于制氢/氧化的新型电催化剂的开发及其在燃料电池中的应用方面的一些成果,主要集中在考虑 M[P2N2]2 2+ (M = Ni, ) 最近获得的配合物和其他镍结构。已被广泛研究作为 Pt 基催化剂的替代品,展示了“氢经济”发展的前景。本篇小综述总结了在新型制氢/氧化电催化剂的开发及其在燃料电池中的应用方面的一些成果,主要集中在考虑 M[P2N2]2 2+ (M = Ni, Fe ) 最近获得的配合物和其他镍结构。已被广泛研究作为 Pt 基催化剂的替代品,展示了“氢经济”发展的前景。本篇小综述总结了在新型制氢/氧化电催化剂的开发及其在燃料电池中的应用方面的一些成果,主要集中在考虑 M[P2N2]2 2+ (M = Ni, Fe ) 最近获得的配合物和其他镍结构。
更新日期:2020-09-25
down
wechat
bug