当前位置: X-MOL 学术Hydrometallurgy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Green synthesis of tellurium nanoparticles by tellurate and tellurite reduction using Aeromonas hydrophila under different aeration conditions
Hydrometallurgy ( IF 4.8 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.hydromet.2020.105415
Laura Castro , Jing Li , Felisa González , Jesús A. Muñoz , M. Luisa Blázquez

Abstract Tellurium nanoparticles (TeNPs) are extensively used in biomedicine, electronics and some other industrial applications. Few microorganisms have been studied for the production of TeNPs either under aerobic or anaerobic conditions. Remarkably, this study is the first report of a bacteria able to perfectly grow anaerobically and aerobically in the presence of both tellurium oxyanions, TeO32− and TeO42−. Aeromonas hydrophila offers a clean and cost-effective synthesis of tellurium nanoparticles using a biological method and overcoming the main limitations of traditional synthesis, such as the requirement of a lot of energy and toxic reagents. The cells grew up to 75 mg/L of tellurium when tellurite was the precursor and up to 200 mg/L of tellurium with tellurate. The biogenic nanoparticles were extensively characterized in terms of morphology, structure and composition using SEM, TEM, XRD and EDX analysis. Different Te(0) nanostructures were biosynthesized varying growth conditions: crystalline nanorods (some of them reach more than 1000 nm in length due to Ostwald ripening), rosettes and irregularly shaped nanospheres. In addition, A. hydrophila developed various mechanisms to produce the elemental tellurium and to overcome the toxicity demonstrating the versatility of this microorganism to subsist in polluted environments and its potential for biotechnological applications in bioremediation including the green synthesis of TeNPs.

中文翻译:

在不同曝气条件下使用嗜水气单胞菌通过碲酸盐和碲酸盐还原绿色合成碲纳米颗粒

摘要碲纳米颗粒(TeNPs)广泛用于生物医学、电子和其他一些工业应用。很少有微生物研究过在有氧或厌氧条件下生产 TeNPs。值得注意的是,这项研究首次报道了一种细菌能够在碲氧阴离子 TeO32- 和 TeO42- 存在的情况下在厌氧和有氧条件下完美生长。嗜水气单胞菌使用生物方法提供了一种清洁且具有成本效益的碲纳米粒子合成方法,并克服了传统合成方法的主要局限性,例如需要大量能量和有毒试剂。当碲酸盐是前体时,细胞生长到 75 毫克/升的碲,而碲酸盐则高达 200 毫克/升。使用 SEM、TEM、XRD 和 EDX 分析在形态、结构和组成方面对生物纳米粒子进行了广泛表征。不同的 Te(0) 纳米结构在不同的生长条件下被生物合成:结晶纳米棒(由于 Ostwald 成熟,其中一些长度超过 1000 nm)、玫瑰花结和形状不规则的纳米球。此外,嗜水 A. 开发了各种机制来生产元素碲和克服毒性,证明了这种微生物在污染环境中生存的多功能性及其在生物修复中的生物技术应用的潜力,包括 TeNP 的绿色合成。结晶纳米棒(由于奥斯特瓦尔德熟化,其中一些长度超过 1000 nm)、玫瑰花结和形状不规则的纳米球。此外,嗜水 A. 开发了各种机制来生产元素碲和克服毒性,证明了这种微生物在污染环境中生存的多功能性及其在生物修复中的生物技术应用的潜力,包括 TeNP 的绿色合成。结晶纳米棒(由于奥斯特瓦尔德熟化,其中一些长度超过 1000 nm)、玫瑰花结和形状不规则的纳米球。此外,嗜水 A. 开发了各种机制来生产元素碲和克服毒性,证明了这种微生物在污染环境中生存的多功能性及其在生物修复中的生物技术应用的潜力,包括 TeNP 的绿色合成。
更新日期:2020-09-01
down
wechat
bug