当前位置: X-MOL 学术Geofluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Compaction of Hyaloclastite from the Active Geothermal System at Krafla Volcano, Iceland
Geofluids ( IF 1.2 ) Pub Date : 2020-07-11 , DOI: 10.1155/2020/3878503
Guðjón H. Eggertsson 1 , Jackie E. Kendrick 1 , Joshua Weaver 1 , Paul A. Wallace 1 , James E. P. Utley 1 , John D. Bedford 1 , Michael J. Allen 1 , Sigurður H. Markússon 2 , Richard H. Worden 1 , Daniel R. Faulkner 1 , Yan Lavallée 1
Affiliation  

Hyaloclastites commonly form high-quality reservoir rocks in volcanic geothermal provinces. Here, we investigated the effects of confinement due to burial following prolonged accumulation of eruptive products on the physical and mechanical evolution of surficial and subsurface (depths of 70 m, 556 m, and 732 m) hyaloclastites from Krafla volcano, Iceland. Upon loading in a hydrostatic cell, the porosity and permeability of the surficial hyaloclastite decreased linearly with mean effective stress, as pores and cracks closed due to elastic (recoverable) compaction up to 22-24 MPa (equivalent to ~1.3 km depth in the reservoir). Beyond this mean effective stress, denoted as , we observed accelerated porosity and permeability reduction with increasing confinement, as the rock underwent permanent inelastic compaction. In comparison, the porosity and permeability of the subsurface core samples were less sensitive to mean effective stress, decreasing linearly with increasing confinement as the samples compacted elastically within the conditions tested (to 40 MPa). Although the surficial material underwent permanent, destructive compaction, it maintained higher porosity and permeability than the subsurface hyaloclastites throughout the experiments. We constrained the evolution of yield curves of the hyaloclastites, subjected to different effective mean stresses in a triaxial press. Surficial hyaloclastites underwent a brittle-ductile transition at an effective mean stress of ~10.5 MPa, and peak strength (differential stress) reached 13 MPa. When loaded to effective mean stresses of 33 and 40 MPa, the rocks compacted, producing new yield curves with a brittle-ductile transition at ~12.5 and ~19 MPa, respectively, but showed limited strength increase. In comparison, the subsurface samples were found to be much stronger, displaying higher strengths and brittle-ductile transitions at higher effective mean stresses (i.e., 37.5 MPa for 70 m sample, >75 MPa for 556 m, and 68.5 MPa for 732 m) that correspond to their lower porosities and permeabilities. Thus, we conclude that compaction upon burial alone is insufficient to explain the physical and mechanical properties of the subsurface hyaloclastites present in the reservoir at Krafla volcano. Mineralogical alteration, quantified using SEM-EDS, is invoked to explain the further reduction of porosity and increase in strength of the hyaloclastite in the active geothermal system at Krafla.

中文翻译:

冰岛克拉夫拉火山活动地热系统透明碎屑岩的压实

玻璃碎屑岩通常在火山地热区形成优质储层。在这里,我们研究了火山喷发产物长期积累后埋藏对冰岛克拉夫拉火山地表和地下(深度为 70 m、556 m 和 732 m)透明碎屑岩的物理和机械演化的影响。在静压单元中加载后,表面透明碎屑岩的孔隙度和渗透率随平均有效应力线性下降,因为孔隙和裂缝由于弹性(可恢复)压实而闭合,高达 22-24 MPa(相当于储层中约 1.3 公里的深度) )。除了这个平均有效应力,表示为 ,我们观察到孔隙度和渗透率随着约束的增加而加速减少,因为岩石经历了永久的非弹性压实。相比下,地下岩心样品的孔隙率和渗透率对平均有效应力不太敏感,随着样品在测试条件(至 40 MPa)内弹性压实,随着约束的增加而线性降低。尽管表面材料经历了永久性的破坏性压实,但在整个实验过程中,它比地下透明碎屑岩保持了更高的孔隙率和渗透率。我们限制了透明碎屑岩屈服曲线的演变,在三轴压力机中受到不同的有效平均应力。表面透明碎屑在有效平均应力为~10.5 MPa 时经历了脆-韧转变,峰值强度(差应力)达到了 13 MPa。当加载到 33 和 40 MPa 的有效平均应力时,岩石被压实,产生新的屈服曲线,脆韧转变分别为~12.5 和~19 MPa,但强度增加有限。相比之下,发现地下样品要强得多,在更高的有效平均应力下显示出更高的强度和脆-韧转变(即,70 m 样品为 37.5 MPa,556 m 为 >75 MPa,732 m 为 68.5 MPa)这与其较低的孔隙率和渗透率相对应。因此,我们得出结论,单独的埋藏压实不足以解释克拉夫拉火山储层中存在的地下透明碎屑岩的物理和机械特性。使用 SEM-EDS 量化的矿物学改变被用来解释 Krafla 活跃地热系统中透明碎屑岩的孔隙率的进一步降低和强度的增加。分别,但显示出有限的强度增加。相比之下,发现地下样品要强得多,在更高的有效平均应力下显示出更高的强度和脆-韧转变(即,70 m 样品为 37.5 MPa,556 m 为 >75 MPa,732 m 为 68.5 MPa)这与其较低的孔隙率和渗透率相对应。因此,我们得出结论,单独的埋藏压实不足以解释克拉夫拉火山储层中存在的地下透明碎屑岩的物理和机械特性。使用 SEM-EDS 量化的矿物学改变被用来解释 Krafla 活跃地热系统中透明碎屑岩的孔隙率的进一步降低和强度的增加。分别,但显示出有限的强度增加。相比之下,发现地下样品要强得多,在更高的有效平均应力下显示出更高的强度和脆-韧转变(即,70 m 样品为 37.5 MPa,556 m 为 >75 MPa,732 m 为 68.5 MPa)这与其较低的孔隙率和渗透率相对应。因此,我们得出结论,单独的埋藏压实不足以解释克拉夫拉火山储层中存在的地下透明碎屑岩的物理和机械特性。使用 SEM-EDS 量化的矿物学改变被用来解释 Krafla 活跃地热系统中透明碎屑岩的孔隙率的进一步降低和强度的增加。发现地下样品要强得多,在更高的有效平均应力(即,70 m 样品为 37.5 MPa,556 m 为 >75 MPa,732 m 为 68.5 MPa)下显示出更高的强度和脆性-韧性转变,对应于它们的孔隙率和渗透率较低。因此,我们得出结论,单独的埋藏压实不足以解释克拉夫拉火山储层中存在的地下透明碎屑岩的物理和机械特性。使用 SEM-EDS 量化的矿物学改变被用来解释 Krafla 活跃地热系统中透明碎屑岩的孔隙率的进一步降低和强度的增加。发现地下样品要强得多,在更高的有效平均应力(即,70 m 样品为 37.5 MPa,556 m 为 >75 MPa,732 m 为 68.5 MPa)下显示出更高的强度和脆性-韧性转变,对应于它们的孔隙率和渗透率较低。因此,我们得出结论,单独的埋藏压实不足以解释克拉夫拉火山储层中存在的地下透明碎屑岩的物理和机械特性。使用 SEM-EDS 量化的矿物学改变被用来解释 Krafla 活跃地热系统中透明碎屑岩的孔隙率的进一步降低和强度的增加。5 MPa(732 m)对应于其较低的孔隙率和渗透率。因此,我们得出结论,单独的埋藏压实不足以解释克拉夫拉火山储层中存在的地下透明碎屑岩的物理和机械特性。使用 SEM-EDS 量化的矿物学改变被用来解释 Krafla 活跃地热系统中透明碎屑岩的孔隙率的进一步降低和强度的增加。5 MPa(732 m)对应于其较低的孔隙率和渗透率。因此,我们得出结论,单独的埋藏压实不足以解释克拉夫拉火山储层中存在的地下透明碎屑岩的物理和机械特性。使用 SEM-EDS 量化的矿物学改变被用来解释 Krafla 活跃地热系统中透明碎屑岩的孔隙率的进一步降低和强度的增加。
更新日期:2020-07-11
down
wechat
bug