当前位置: X-MOL 学术Lithos › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Temporal variation of titanite morphology and chemistry in a long-lived shear zone: The Clarke Head syenite in the Minas Fault Zone, Nova Scotia
Lithos ( IF 2.9 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.lithos.2020.105670
Georgia Pe-Piper , David J.W. Piper , Justin Nagle

Abstract The mineral chemistry of titanite has been studied in hydrothermally altered syenite preserved as blocks in a salt wall within a regional intracontinental shear zone. The study focusses on the controls on temporal variation in REEs, Zr, Nb, U and Th. Several generations of titanite are recognised on the basis of morphology, chemistry, and relationship to other secondary minerals. Magmatic euhedral to subhedral titanite has Ti and Zr contents characteristic of magmatic titanite in other studies, but does not have a magmatic abundance of REE. Rather, it is 102–104 times depleted in LREE and only slightly depleted in HREE. The leaching of LREE began during a regionally recognised phase of potassic alteration, as amphibole and biotite in gabbro and diorite recrystallized along shear zones and released K, Ca, and F. Later, some 15 Ma after emplacement, the alkali feldspar in the syenite was largely altered to scapolite and analcime by interaction with adjacent halite and gypsum deposits. Titanite formed at that time, from dissolution-reprecipitation reactions in large rutile crystals, is less depleted in LREE, as a result of the dominance of Cl− in hydrothermal waters. Following that event, F−-dominated hydrothermal waters prevailed again, resulting in more LREE depletion in previously formed titanite and in neoformed hydrothermal titanite. At that time, there was also depletion in Zr and U. The trace elements in hydrothermal titanite are thus very informative on the hydrothermal history of the rocks. A combination of morphology and trace-element signature allows different hydrothermal stages to be distinguished.

中文翻译:

长寿命剪切带中钛钛矿形态和化学成分的时间变化:新斯科舍米纳斯断层带中的克拉克头正长岩

摘要 在区域陆内剪切带内以块状保存在盐壁中的热液蚀变正长岩中,研究了钛铁矿的矿物化学。该研究侧重于控制 REE、Zr、Nb、U 和 Th 的时间变化。根据形态、化学以及与其他次生矿物的关系,可以识别出几代钛铁矿。岩浆自形至半自形钛钛矿在其他研究中具有岩浆钛钛矿特征的 Ti 和 Zr 含量,但不具有岩浆丰度的稀土元素。相反,它在 LREE 中消耗了 102-104 倍,而在 HREE 中仅略微消耗了 102-104 倍。轻稀土的浸出开始于区域公认的钾化蚀变阶段,因为辉长岩和闪长岩中的角闪石和黑云母沿剪切带重结晶并释放出 K、Ca 和 F。后来,就位后约 15 Ma,正长岩中的碱性长石通过与相邻的岩盐和石膏矿床的相互作用,在很大程度上转变为方柱石和方沸石。由于在热水中 Cl- 占主导地位,当时形成的钛铁矿由大金红石晶体中的溶解-再沉淀反应形成,其轻稀土元素的消耗较少。在那次事件之后,F-主导的热液水再次盛行,导致先前形成的钛铁矿和新形成的热液钛矿中的轻稀土元素消耗更多。那时,锆和铀也枯竭了。热液钛铁矿中的微量元素因此对岩石的热液历史非常有用。形态学和微量元素特征的结合可以区分不同的热液阶段。通过与相邻的岩盐和石膏矿床的相互作用,正长岩中的碱性长石在很大程度上变成了方柱石和方沸石。由于在热液水中 Cl- 占主导地位,当时形成的钛铁矿由大金红石晶体中的溶解-再沉淀反应形成,其轻稀土元素的消耗较少。在那次事件之后,F-主导的热液水再次盛行,导致先前形成的钛铁矿和新形成的热液钛矿中的轻稀土元素消耗更多。那时,锆和铀也枯竭了。热液钛铁矿中的微量元素因此对岩石的热液历史非常有用。形态学和微量元素特征的结合可以区分不同的热液阶段。通过与相邻的岩盐和石膏矿床的相互作用,正长岩中的碱性长石在很大程度上变成了方柱石和方沸石。由于在热液水中 Cl- 占主导地位,当时形成的钛铁矿由大金红石晶体中的溶解-再沉淀反应形成,其轻稀土元素的消耗较少。在那次事件之后,F-主导的热液水再次盛行,导致先前形成的钛铁矿和新形成的热液钛矿中的轻稀土元素消耗更多。那时,锆和铀也枯竭了。热液钛铁矿中的微量元素因此对岩石的热液历史非常有用。形态学和微量元素特征的结合可以区分不同的热液阶段。
更新日期:2020-11-01
down
wechat
bug