当前位置: X-MOL 学术Acta Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design of a V-Ti-Ni alloy with superelastic nano-precipitates
Acta Materialia ( IF 8.3 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.actamat.2020.07.023
J.-L. Zhang , J.L. Cann , S.B. Maisel , K. Qu , E. Plancher , H. Springer , E. Povoden-Karadeniz , P. Gao , Y. Ren , B. Grabowski , C.C. Tasan

Abstract Stress-induced martensitic transformations enable metastable alloys to exhibit enhanced strain hardening capacity, leading to improved formability and toughness. As is well-known from transformation-induced plasticity (TRIP) steels, however, the resulting martensite can limit ductility and fatigue life due to its intrinsic brittleness. In this work, we explore an alloy design strategy that utilizes stress-induced martensitic transformations but does not retain the martensite phase. This strategy is based on the introduction of superelastic nano-precipitates, which exhibit reverse transformation after initial stress-induced forward transformation. To this end, utilizing ab-initio simulations and thermodynamic calculations we designed and produced a V45Ti30Ni25 (at%) alloy. In this alloy, TiNi is present as nano-precipitates uniformly distributed within a ductile V-rich base-centered cubic (bcc) β matrix, as well as being present as a larger matrix phase. We characterized the microstructure of the produced alloy using various scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. The bulk mechanical properties of the alloy are demonstrated through tensile tests, and the reversible transformation in each of the TiNi morphologies were confirmed by in-situ TEM micro-pillar compression experiments, in-situ high-energy diffraction synchrotron cyclic tensile tests, indentation experiments, and differential scanning calorimetry experiments. The observed transformation pathways and variables impacting phase stability are critically discussed.

中文翻译:

具有超弹性纳米析出物的 V-Ti-Ni 合金的设计

摘要 应力诱导的马氏体转变使亚稳态合金表现出增强的应变硬化能力,从而改善成形性和韧性。然而,正如众所周知的相变诱导塑性 (TRIP) 钢,由此产生的马氏体由于其固有的脆性会限制延展性和疲劳寿命。在这项工作中,我们探索了一种合金设计策略,该策略利用应力引起的马氏体转变但不保留马氏体相。该策略基于超弹性纳米沉淀物的引入,其在初始应力诱导的正向转变后表现出反向转变。为此,我们利用 ab-initio 模拟和热力学计算设计并生产了 V45Ti30Ni25 (at%) 合金。在这种合金中,TiNi 以纳米沉淀物的形式存在,均匀分布在可延展的富 V 基心立方 (bcc) β 基体中,以及作为较大的基体相存在。我们使用各种扫描电子显微镜 (SEM) 和透射电子显微镜 (TEM) 方法对生产的合金的微观结构进行了表征。通过拉伸试验证明了合金的整体力学性能,通过原位 TEM 微柱压缩实验、原位高能衍射同步加速器循环拉伸试验、压痕实验证实了每种 TiNi 形貌的可逆转变和差示扫描量热实验。对观察到的转变途径和影响相稳定性的变量进行了批判性讨论。以及作为较大的基质相存在。我们使用各种扫描电子显微镜 (SEM) 和透射电子显微镜 (TEM) 方法对生产的合金的微观结构进行了表征。通过拉伸试验证明了合金的整体力学性能,通过原位 TEM 微柱压缩实验、原位高能衍射同步加速器循环拉伸试验、压痕实验证实了每种 TiNi 形貌的可逆转变和差示扫描量热实验。对观察到的转变途径和影响相稳定性的变量进行了批判性讨论。以及作为较大的基质相存在。我们使用各种扫描电子显微镜 (SEM) 和透射电子显微镜 (TEM) 方法对生产的合金的微观结构进行了表征。通过拉伸试验证明了合金的整体力学性能,通过原位 TEM 微柱压缩实验、原位高能衍射同步加速器循环拉伸试验、压痕实验证实了每种 TiNi 形貌的可逆转变和差示扫描量热实验。对观察到的转变途径和影响相稳定性的变量进行了批判性讨论。我们使用各种扫描电子显微镜 (SEM) 和透射电子显微镜 (TEM) 方法对生产的合金的微观结构进行了表征。通过拉伸试验证明了合金的整体力学性能,通过原位 TEM 微柱压缩实验、原位高能衍射同步加速器循环拉伸试验、压痕实验证实了每种 TiNi 形貌的可逆转变和差示扫描量热实验。对观察到的转变途径和影响相稳定性的变量进行了批判性讨论。我们使用各种扫描电子显微镜 (SEM) 和透射电子显微镜 (TEM) 方法对生产的合金的微观结构进行了表征。通过拉伸试验证明了合金的整体力学性能,通过原位 TEM 微柱压缩实验、原位高能衍射同步加速器循环拉伸试验、压痕实验证实了每种 TiNi 形貌的可逆转变和差示扫描量热实验。对观察到的转变途径和影响相稳定性的变量进行了批判性讨论。通过原位TEM微柱压缩实验、原位高能衍射同步加速器循环拉伸试验、压痕实验和差示扫描量热实验证实了每种TiNi形貌的可逆转变。对观察到的转变途径和影响相稳定性的变量进行了批判性讨论。通过原位TEM微柱压缩实验、原位高能衍射同步加速器循环拉伸试验、压痕实验和差示扫描量热实验证实了每种TiNi形貌的可逆转变。对观察到的转变途径和影响相稳定性的变量进行了批判性讨论。
更新日期:2020-09-01
down
wechat
bug