当前位置: X-MOL 学术Int. J. Theor. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cooling a Mechanical Oscillator in Opto-electro-mechanical System with Frequency Modulations
International Journal of Theoretical Physics ( IF 1.3 ) Pub Date : 2020-07-11 , DOI: 10.1007/s10773-020-04538-6
Xiao-Yuan Gao , Tie Wang , Hong-Fu Wang , Ai-Dong Zhu , Cheng-Shou An

The opto-electro-mechanical system as a quantum interface between electronic information and optical information plays an important role in quantum information processing. Ground-state cooling of the macroscopic mechanical oscillator is a crucial requirement for this system in order to eliminate the effect of thermal fluctuations on transmission of information. Here, we propose a scheme of ground-state cooling for a mechanical oscillator which is coupled to an optical cavity through radiation pressure force and simultaneously coupled to a superconducting microwave cavity through an effective capacitance. Meanwhile, the periodical frequency modulations are applied to the optical mode, microwave cavity, and mechanical mode, respectively. The cooling efficiency is analyzed and cooling dynamics is simulated numerically by means of covariance matrix. The results show that the Stokes heating processes can be suppressed effectively by means of frequency modulations, and the mechanical oscillator can be cooled to near its ground-state with a higher efficiency than that of a standard optomechanical system due to the double cooling channel. Moreover, a complementary cooling effect is found between these two cooling channels, i.e., a high cooling efficiency can be achieved by cooperation between a good optical cavity and a bad microwave cavity, or vice versa. This cooperative cooling of the double channel breaks the limitation of resolved-sideband regime.

中文翻译:

用频率调制冷却光机电系统中的机械振荡器

光机电系统作为电子信息和光信息之间的量子接口,在量子信息处理中发挥着重要作用。宏观机械振荡器的基态冷却是该系统的关键要求,以消除热波动对信息传输的影响。在这里,我们提出了一种机械振荡器的基态冷却方案,该机械振荡器通过辐射压力耦合到光学腔,同时通过有效电容耦合到超导微波腔。同时,周期性频率调制分别应用于光学模式、微波腔和机械模式。通过协方差矩阵对冷却效率进行了分析,并对冷却动力学进行了数值模拟。结果表明,通过频率调制可以有效抑制斯托克斯加热过程,并且由于双冷却通道,机械振荡器可以以比标准光机系统更高的效率冷却到其基态附近。而且,这两个冷却通道之间存在互补的冷却效果,即好的光学腔和坏的微波腔之间的配合可以实现高冷却效率,反之亦然。双通道的这种协同冷却打破了解析边带机制的限制。由于双冷却通道,机械振荡器可以以比标准光机系统更高的效率冷却到接近其基态。而且,这两个冷却通道之间存在互补的冷却效果,即好的光学腔和坏的微波腔之间的配合可以实现高冷却效率,反之亦然。双通道的这种协同冷却打破了解析边带机制的限制。由于双冷却通道,机械振荡器可以以比标准光机系统更高的效率冷却到接近其基态。而且,这两个冷却通道之间存在互补的冷却效果,即好的光学腔和坏的微波腔之间的配合可以实现高冷却效率,反之亦然。双通道的这种协同冷却打破了解析边带机制的限制。
更新日期:2020-07-11
down
wechat
bug