当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Insight into atomically dispersed porous M-N-C single-site catalysts for electrochemical CO2 reduction.
Nanoscale ( IF 5.8 ) Pub Date : 2020-07-10 , DOI: 10.1039/d0nr03044a
Leta Takele Menisa 1 , Ping Cheng , Chang Long , Xueying Qiu , Yonglong Zheng , Jianyu Han , Yin Zhang , Yan Gao , Zhiyong Tang
Affiliation  

Transition metal single-site catalysts have unique activities for electrochemical CO2 reduction. However, the exact active center and reaction mechanism remain unclear due to a number of challenges in the controllable synthesis of single-atom catalysts (SACs) and defects in metal supports. Here we combine both experimental and theoretical calculations to systematically explore the mechanistic reaction path of selected transition metal single sites on nitrogen-doped porous carbon. Facile pyrolysis was employed to prepare a fullerene type carbon with 0.35 nm interlayer distances to support the family of M–N–C (M = Ni, Fe, Co and Cu). Experimentally, Ni and Fe outperform the other metals with high faradaic efficiency up to >97% and 86.8%, respectively. The theoretical calculations reveal that Ni–N–C exhibits optimum activity for CO2 reduction to CO at a higher overpotential because of the moderate *CO binding energy at the Ni site, which accommodates *COOH formation and *CO desorption. Furthermore, the strong binding energy of *CO on the Fe site enables the catalyst to reduce CO2 beyond CO. A remarkable current density of 17.6 mA cm−2 has been achieved with the Ni–N–C catalyst and a record of 5.74 s−1 TOF has been realized at −0.8 V vs. RHE for the Ni–N–C catalyst.

中文翻译:

深入了解原子分散的多孔MNC单中心催化剂,用于电化学还原CO2。

过渡金属单中心催化剂对电化学CO 2具有独特的活性减少。然而,由于在可控合成单原子催化剂(SAC)和金属载体中的缺陷方面存在许多挑战,确切的活性中心和反应机理仍不清楚。在这里,我们结合实验和理论计算,系统地探索了氮掺杂多孔碳上选定过渡金属单位的机理反应路径。轻度热解用于制备层间距离为0.35 nm的富勒烯型碳,以支持M–N–C族(M = Ni,Fe,Co和Cu)。实验上,镍和铁的法拉第效率高出其他金属,分别高达> 97%和86.8%。理论计算表明,Ni–N–C对CO 2表现出最佳活性在较高的超电势下还原为CO,这是因为Ni位点具有适度的* CO结合能,可适应* COOH的形成和* CO的解吸。此外,* CO在Fe位上的强大结合能使催化剂能够将CO 2还原到CO之外。Ni -N-C催化剂的电流密度达到了惊人的17.6 mA cm -2,并记录了5.74 s -1 TOF已在−0.8 V vs的条件下实现。Ni–N–C催化剂的RHE。
更新日期:2020-08-14
down
wechat
bug