当前位置: X-MOL 学术Phys. Rev. D › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Active-sterile neutrino mixing constraints using reactor antineutrinos with the ISMRAN setup
Physical Review D ( IF 4.6 ) Pub Date : 2020-07-10 , DOI: 10.1103/physrevd.102.013002
S. P. Behera , D. K. Mishra , L. M. Pant

In this work, we present an analysis of the sensitivity to the active-sterile neutrino mixing with the Indian Scintillator Matrix for Reactor Anti-Neutrino (ISMRAN) experimental setup at very short baseline. The 3 $(\text{active})+1$ (sterile) neutrino oscillation model is considered to study the sensitivity of the active-sterile neutrino in the mass splitting and mixing angle plane. In this article, we have considered the measurement of electron antineutrino induced events employing a single detector which can be placed either at a single position or moved between a near and far positions from the given reactor core. Results extracted in the later case are independent of the theoretical prediction of the reactor anti-neutrino spectrum and detector related systematic uncertainties. Our analysis shows that the results obtained from the measurement carried out at combination of the near and far detector positions are improved significantly at higher $\mathrm{\ensuremath{\Delta}}{m}_{41}^{2}$ compared to the ones obtained with the measurement at a single detector position only. It is found that the best possible combination of near and far detector positions from a $100\text{ }\text{ }{\mathrm{MW}}_{\mathrm{th}}$ power DHRUVA research reactor core are 7 m and 9 m, respectively, for which ISMRAN setup can exclude in the range $1.4\text{ }\text{ }{\mathrm{eV}}^{2}\ensuremath{\le}\mathrm{\ensuremath{\Delta}}{m}_{41}^{2}\ensuremath{\le}4.0\text{ }\text{ }{\mathrm{eV}}^{2}$ of reactor antineutrino anomaly region along with the present best-fit point of active-sterile neutrino oscillation parameters. At those combinations of detector positions, the ISMRAN setup can observe the active sterile neutrino oscillation with a 95% confidence level provided that ${\mathrm{sin}}^{2}2{\ensuremath{\theta}}_{14}\ensuremath{\ge}0.09$ at $\mathrm{\ensuremath{\Delta}}{m}_{41}^{2}=1\text{ }\text{ }{\mathrm{eV}}^{2}$ for an exposure of 1 ton-yr. The active-sterile neutrino mixing sensitivity can be improved by about 22% at the same exposure by placing the detector at near and far distances of 15 m and 17 m, respectively, from the compact proto-type fast breeder reactor (PFBR) facility which has a higher thermal power of $1250\text{ }\text{ }{\mathrm{MW}}_{\mathrm{th}}$.

中文翻译:

使用反应堆反中微子和 ISMRAN 设置的活性无菌中微子混合约束

在这项工作中,我们分析了活性无菌中微子与用于反应堆反中微子 (ISMRAN) 实验装置的印度闪烁体矩阵在非常短的基线混合的敏感性。3 $(\text{active})+1$ (sterile) 中微子振荡模型被认为是研究活性-无菌中微子在质量分裂和混合角平面中的敏感性。在本文中,我们考虑了使用单个探测器对电子反中微子诱发事件的测量,该探测器可以放置在单个位置或在距给定反应堆堆芯的远近位置之间移动。在后一种情况下提取的结果与反应堆反中微子谱的理论预测和探测器相关的系统不确定性无关。我们的分析表明,在较高的 $\mathrm{\ensuremath{\Delta}}{m}_{41}^{2}$ 相比,在近和远探测器位置组合进行的测量获得的结果显着改善到仅在单个检测器位置进行测量获得的结果。从 $100\text{ }\text{ }{\mathrm{MW}}_{\mathrm{th}}$ 功率 DHRUVA 研究堆堆芯中发现,近和远探测器位置的最佳组合是 7 m 和分别为 9 m,为此 ISMRAN 设置可以排除 $1.4\text{ }\text{ }{\mathrm{eV}}^{2}\ensuremath{\le}\mathrm{\ensuremath{\Delta}} {m}_{41}^{2}\ensuremath{\le}4.0\text{ }\text{ }{\mathrm{eV}}^{2}$ 反应堆反中微子异常区域以及当前最佳拟合活性无菌中微子振荡参数的点。在这些探测器位置的组合中,ISMRAN 设置可以以 95% 的置信度观察活跃的惰性中微子振荡,前提是 ${\mathrm{sin}}^{2}2{\ensuremath{\theta}}_{14} \ensuremath{\ge}0.09$ at $\mathrm{\ensuremath{\Delta}}{m}_{41}^{2}=1\text{ }\text{ }{\mathrm{eV}}^{ 2}$ 为 1 吨年的暴露。通过将探测器分别放置在距离紧凑型原型快中子增殖反应堆 (PFBR) 设施 15 m 和 17 m 的近处和远处,在相同的暴露量下,活性无菌中微子混合灵敏度可提高约 22%。具有更高的热功率 $1250\text{ }\text{ }{\mathrm{MW}}_{\mathrm{th}}$。09$ at $\mathrm{\ensuremath{\Delta}}{m}_{41}^{2}=1\text{ }\text{ }{\mathrm{eV}}^{2}$ 曝光1 吨年。通过将探测器分别放置在距离紧凑型原型快中子增殖反应堆 (PFBR) 设施 15 m 和 17 m 的近处和远处,在相同的暴露量下,活性无菌中微子混合灵敏度可提高约 22%。具有更高的热功率 $1250\text{ }\text{ }{\mathrm{MW}}_{\mathrm{th}}$。09$ at $\mathrm{\ensuremath{\Delta}}{m}_{41}^{2}=1\text{ }\text{ }{\mathrm{eV}}^{2}$ 曝光1 吨年。通过将探测器分别放置在距离紧凑型原型快中子增殖反应堆 (PFBR) 设施 15 m 和 17 m 的近处和远处,在相同的暴露量下,活性无菌中微子混合灵敏度可提高约 22%。具有更高的热功率 $1250\text{ }\text{ }{\mathrm{MW}}_{\mathrm{th}}$。
更新日期:2020-07-10
down
wechat
bug