当前位置: X-MOL 学术Phys. Rev. E › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Understanding interfacial fracture behavior between microinterlocked soft layers using physics-based cohesive zone modeling.
Physical Review E ( IF 2.2 ) Pub Date : 2020-07-10 , DOI: 10.1103/physreve.102.012801
Navajit S Baban 1, 2 , Ajymurat Orozaliev 1 , Christopher J Stubbs 3 , Yong Ak Song 1, 4
Affiliation  

We examine the underlying fracture mechanics of the human skin dermal-epidermal layer's microinterlocks using a physics-based cohesive zone finite-element model. Using microfabrication techniques, we fabricated highly dense arrays of spherical microstructures of radius 50μm without and with undercuts, which occur in an open spherical cavity whose centroid lies below the microstructure surface to create microinterlocks in polydimethylsiloxane layers. From experimental peel tests, we find that the maximum density microinterlocks without and with undercuts enable the respective 4-fold and 5-fold increase in adhesion strength as compared to the plain layers. Critical visualization of the single microinterlock fracture from the cohesive zone model reveals a contact interaction-based phenomena where the primary propagating crack is arrested and the secondary crack is initiated in the microinterlocked area. Strain energy energetics confirmed significantly lower strain energy dissipation for the microinterlock with the undercut as compared to its nonundercut counterpart. These phenomena are completely absent in a plain interface fracture where the fracture propagates catastrophically without any arrests. These events confirm the difference in the experimental results corroborated by the Cook-Gordon mechanism. The findings from the cohesive zone simulation provide deeper insights into soft microinterlock fracture mechanics that could prominently help in the rational designing of sutureless skin grafts and electronic skin.

中文翻译:

使用基于物理的内聚区建模了解微连锁软层之间的界面断裂行为。

我们使用基于物理的内聚区有限元模型检查了人类皮肤真皮-表皮层的微连锁结构的潜在断裂力学。使用微加工技术,我们制造了半径为球形的高密度球形微结构阵列50μ没有和有底切,底切发生在一个敞开的球形腔中,该腔的质心位于微结构表面的下方,从而在聚二甲基硅氧烷层中形成微连锁。从实验剥离测试中,我们发现不带底切和带底切的最大密度微联锁可以实现4折和 5与普通层相比,粘合强度增加了两倍。从内聚区模型对单个微连锁断裂的关键可视化显示了基于接触相互作用的现象,其中主要的扩展裂纹被阻止,而次级裂纹则在微连锁区域中被引发。应变能能量学证实了与底切相比,带有底切的微联锁的应变能耗散明显更低。这些现象在平原界面裂缝中是完全不存在的,在该界面裂缝中,灾难性地传播而没有任何停止。这些事件证实了由Cook-Gordon机制证实的实验结果的差异。
更新日期:2020-07-10
down
wechat
bug