当前位置: X-MOL 学术Symmetry › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microsolvation of Histidine—A Theoretical Study of Intermolecular Interactions Based on AIM and SAPT Approaches
Symmetry ( IF 2.2 ) Pub Date : 2020-07-10 , DOI: 10.3390/sym12071153
Beata Kizior , Jarosław J. Panek , Aneta Jezierska

Histidine is unique among amino acids because of its rich tautomeric properties. It participates in essential enzymatic centers, such as catalytic triads. The main aim of the study is the modeling of the change of molecular properties between the gas phase and solution using microsolvation models. We investigate histidine in its three protonation states, microsolvated with 1:6 water molecules. These clusters are studied computationally, in the gas phase and with water as a solvent (Polarizable Continuum Model, PCM) within the Density Functional Theory (DFT) framework. The structural analysis reveals the presence of intra- and intermolecular hydrogen bonds. The Atoms-in-Molecules (AIM) theory is employed to determine the impact of solvation on the charge flow within the histidine, with emphasis on the similarity of the two imidazole nitrogen atoms—topologically not equivalent, they are revealed as electronically similar due to the heterocyclic ring aromaticity. Finally, the Symmetry-Adapted Perturbation Theory (SAPT) is used to examine the stability of the microsolvation clusters. While electrostatic and exchange terms dominate in magnitude over polarization and dispersion, the sum of electrostatic and exchange term is close to zero. This makes polarization the factor governing the actual interaction energy. The most important finding of this study is that even with microsolvation, the polarization induced by the presence of implicit solvent is still significant. Therefore, we recommend combined approaches, mixing explicit water molecules with implicit models.

中文翻译:

组氨酸的微溶剂化——基于 AIM 和 SAPT 方法的分子间相互作用的理论研究

组氨酸在氨基酸中是独一无二的,因为它具有丰富的互变异构特性。它参与重要的酶中心,例如催化三联体。该研究的主要目的是使用微溶剂化模型模拟气相和溶液之间的分子性质变化。我们研究了三种质子化状态的组氨酸,这些状态与 1:6 的水分子微溶剂化。这些簇在密度泛函理论 (DFT) 框架内以气相和水作为溶剂(极化连续模型,PCM)进行计算研究。结构分析揭示了分子内和分子间氢键的存在。分子中的原子 (AIM) 理论用于确定溶剂化对组氨酸内电荷流的影响,强调两个咪唑氮原子的相似性——拓扑上不等价,由于杂环的芳香性,它们在电子上相似。最后,对称适应微扰理论 (SAPT) 用于检查微溶剂化簇的稳定性。虽然静电项和交换项在幅度上比极化和色散更重要,但静电项和交换项之和接近于零。这使得极化成为控制实际相互作用能量的因素。本研究最重要的发现是,即使采用微溶剂化,由隐式溶剂的存在引起的极化仍然很显着。因此,我们推荐组合方法,将显式水分子与隐式模型混合。由于杂环芳香性,它们在电子上相似。最后,对称适应微扰理论 (SAPT) 用于检查微溶剂化簇的稳定性。虽然静电和交换项在幅度上比极化和色散占主导地位,但静电和交换项的总和接近于零。这使得极化成为控制实际相互作用能量的因素。本研究最重要的发现是,即使采用微溶剂化,由隐式溶剂的存在引起的极化仍然很显着。因此,我们推荐组合方法,将显式水分子与隐式模型混合。由于杂环芳香性,它们在电子上相似。最后,对称适应微扰理论 (SAPT) 用于检查微溶剂化簇的稳定性。虽然静电和交换项在幅度上比极化和色散占主导地位,但静电和交换项的总和接近于零。这使得极化成为控制实际相互作用能量的因素。本研究最重要的发现是,即使采用微溶剂化,由隐式溶剂的存在引起的极化仍然很显着。因此,我们推荐组合方法,将显式水分子与隐式模型混合。对称适应微扰理论 (SAPT) 用于检查微溶剂化簇的稳定性。虽然静电和交换项在幅度上比极化和色散占主导地位,但静电和交换项的总和接近于零。这使得极化成为控制实际相互作用能量的因素。本研究最重要的发现是,即使采用微溶剂化,由隐式溶剂的存在引起的极化仍然很显着。因此,我们推荐组合方法,将显式水分子与隐式模型混合。对称适应微扰理论 (SAPT) 用于检查微溶剂化簇的稳定性。虽然静电和交换项在幅度上比极化和色散占主导地位,但静电和交换项的总和接近于零。这使得极化成为控制实际相互作用能量的因素。本研究最重要的发现是,即使采用微溶剂化,由隐式溶剂的存在引起的极化仍然很显着。因此,我们推荐组合方法,将显式水分子与隐式模型混合。本研究最重要的发现是,即使采用微溶剂化,由隐式溶剂的存在引起的极化仍然很显着。因此,我们推荐组合方法,将显式水分子与隐式模型混合。本研究最重要的发现是,即使采用微溶剂化,由隐式溶剂的存在引起的极化仍然很显着。因此,我们推荐组合方法,将显式水分子与隐式模型混合。
更新日期:2020-07-10
down
wechat
bug