当前位置: X-MOL 学术Proc. Natl. Acad. Sci. U.S.A. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mixed-flow design for microfluidic printing of two-component polymer semiconductor systems.
Proceedings of the National Academy of Sciences of the United States of America ( IF 9.4 ) Pub Date : 2020-07-28 , DOI: 10.1073/pnas.2000398117
Gang Wang 1, 2, 3 , Liang-Wen Feng 2, 3 , Wei Huang 2, 3 , Subhrangsu Mukherjee 4 , Yao Chen 2, 3 , Dengke Shen 2 , Binghao Wang 2, 3 , Joseph Strzalka 5 , Ding Zheng 2 , Ferdinand S Melkonyan 2 , Jinhui Yan 6 , J Fraser Stoddart 2 , Simone Fabiano 2, 7 , Dean M DeLongchamp 8 , Meifang Zhu 9 , Antonio Facchetti 3, 10, 11 , Tobin J Marks 3, 4, 10
Affiliation  

The rational creation of two-component conjugated polymer systems with high levels of phase purity in each component is challenging but crucial for realizing printed soft-matter electronics. Here, we report a mixed-flow microfluidic printing (MFMP) approach for two-component π-polymer systems that significantly elevates phase purity in bulk-heterojunction solar cells and thin-film transistors. MFMP integrates laminar and extensional flows using a specially microstructured shear blade, designed with fluid flow simulation tools to tune the flow patterns and induce shear, stretch, and pushout effects. This optimizes polymer conformation and semiconducting blend order as assessed by atomic force microscopy (AFM), transmission electron microscopy (TEM), grazing incidence wide-angle X-ray scattering (GIWAXS), resonant soft X-ray scattering (R-SoXS), photovoltaic response, and field effect mobility. For printed all-polymer (poly[(5,6-difluoro-2-octyl-2H-benzotriazole-4,7-diyl)-2,5-thiophenediyl[4,8-bis[5-(2-hexyldecyl)-2-thienyl]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl]-2,5-thiophenediyl]) [J51]:(poly{[N,N′-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)}) [N2200]) solar cells, this approach enhances short-circuit currents and fill factors, with power conversion efficiency increasing from 5.20% for conventional blade coating to 7.80% for MFMP. Moreover, the performance of mixed polymer ambipolar [poly(3-hexylthiophene-2,5-diyl) (P3HT):N2200] and semiconducting:insulating polymer unipolar (N2200:polystyrene) transistors is similarly enhanced, underscoring versatility for two-component π-polymer systems. Mixed-flow designs offer modalities for achieving high-performance organic optoelectronics via innovative printing methodologies.



中文翻译:


用于双组分聚合物半导体系统微流体印刷的混合流设计。



合理创建每个组分具有高水平相纯度的双组分共轭聚合物系统具有挑战性,但对于实现印刷软物质电子产品至关重要。在这里,我们报告了一种用于双组分π聚合物系统的混合流微流体印刷 (MFMP) 方法,该方法可显着提高体异质结太阳能电池和薄膜晶体管的相纯度。 MFMP 使用特殊的微结构剪切叶片将层流和拉伸流集成在一起,该剪切叶片采用流体流动模拟工具设计,可调整流动模式并引发剪切、拉伸和推出效应。通过原子力显微镜 (AFM)、透射电子显微镜 (TEM)、掠入射广角 X 射线散射 (GIWAXS)、共振软 X 射线散射 (R-SoXS)、光伏响应和场效应迁移率。用于印刷全聚合物(聚[(5,6-二氟-2-辛基-2H-苯并三唑-4,7-二基)-2,5-噻吩二基[4,8-双[5-(2-己基癸基)-] 2-噻吩基]苯并[1,2-b:4,5-b']二噻吩-2,6-二基]-2,5-噻吩二基]) [J51]:(聚{[N,N'-双( 2-辛基十二烷基)萘-1,4,5,8-双(二甲酰亚胺)-2,6-二基]-alt-5,5'-(2,2'-联噻吩)}) [N2200]) 太阳能电池,这种方法提高了短路电流和填充因子,功率转换效率从传统刮刀涂层的 5.20% 提高到 MFMP 的 7.80%。此外,混合聚合物双极[聚(3-己基噻吩-2,5-二基)(P3HT):N2200]和半导体:绝缘聚合物单极(N2200:聚苯乙烯)晶体管的性能也同样得到增强,强调了双组分π的多功能性-聚合物系统。 混合流设计提供了通过创新印刷方法实现高性能有机光电器件的模式。

更新日期:2020-07-29
down
wechat
bug