当前位置: X-MOL 学术Soil Tillage Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The effect of extracellular electron transfer on arsenic speciation transformation in a soil bioelectrochemical system
Soil and Tillage Research ( IF 6.1 ) Pub Date : 2020-07-10 , DOI: 10.1016/j.still.2020.104723
Liuying Wang , Zhenyue Lin , Shurui Liu , Dun Fu , Zhipeng Li , Qingliu Luo , Jianwu Tang , Zheng Chen , Ning He , Yuanpeng Wang

The control and characterization of microbial extracellular electron transfer (EET) reaction-mediated soil arsenic mobilization is still not well understood, which has limited the application of biotechnologies for the remediation of contaminated wastes. In this study, we developed an improved soil bioelectrochemical system (BES) that can decrease the dissolution of As-bearing Fe/Al oxides from anoxic submerged soil by more than 80 % under the application of a 0.9 V external voltage. Combining the results of chemical property and microbial characteristic analyses indicated that an applied voltage was accompanied by a dramatic increase in acetate oxidization and soil substrate bioavailability, facilitating electron transfer reactions for methanogenesis, whereas the applied voltage exhibited a negative effect on microbial EET activities for As/Fe reduction. Subsequently, an additional dual-chamber configuration was employed for comparison and to study the effect of bacteria-electrode interactions on arsenic mobilization; we found that the bioanode and biocathode had reverse effects on the release of As/Fe, suggesting a correlation between the disparate microbial communities and EET-mediated reaction mechanisms on the electrodes. Overall, this study is vital to expand the knowledge of the intimate links between arsenic speciation transformation and microbial electron transport system activity, improve our understanding of BES operation and move towards its application.



中文翻译:

土壤生物电化学体系中细胞外电子转移对砷形态转化的影响

微生物细胞外电子转移(EET)反应介导的土壤砷迁移的控制和表征仍然不甚了解,这限制了生物技术在污染废物修复中的应用。在这项研究中,我们开发了一种改良的土壤生物电化学系统(BES),在施加0.9 V外部电压的情况下,该系统可将含砷的Fe / Al氧化物从缺氧淹没土壤中的溶解减少80%以上。结合化学性质和微生物特征分析的结果表明,施加的电压伴随着乙酸盐氧化作用和土壤基质生物利用度的急剧增加,从而促进了用于甲烷生成的电子转移反应,而施加的电压对微生物的EET活性降低了As / Fe的影响。随后,采用了另一种双室构型进行比较并研究细菌-电极相互作用对砷迁移的影响。我们发现,生物阳极和生物阴极对As / Fe的释放具有相反的影响,表明不同的微生物群落与电极上的EET介导的反应机制之间存在相关性。总体而言,这项研究对于扩大对砷形态转变与微生物电子传输系统活性之间紧密联系的认识,增进我们对BES操作的认识并走向其应用至关重要。另外的双室构型用于比较和研究细菌-电极相互作用对砷迁移的影响;我们发现,生物阳极和生物阴极对As / Fe的释放具有相反的影响,表明不同的微生物群落与电极上的EET介导的反应机制之间存在相关性。总体而言,这项研究对于扩大对砷形态转变与微生物电子传输系统活性之间紧密联系的认识,增进我们对BES操作的认识并走向其应用至关重要。另外的双室构型用于比较和研究细菌-电极相互作用对砷迁移的影响;我们发现,生物阳极和生物阴极对As / Fe的释放具有相反的影响,表明不同的微生物群落与电极上的EET介导的反应机制之间存在相关性。总体而言,这项研究对于扩大对砷形态转变与微生物电子传输系统活性之间紧密联系的认识,增进我们对BES操作的认识并走向其应用至关重要。提示不同的微生物群落与EET介导的电极反应机制之间存在相关性。总体而言,这项研究对于扩大对砷形态转变与微生物电子传输系统活性之间紧密联系的认识,增进我们对BES操作的认识并走向其应用至关重要。提示不同的微生物群落与EET介导的电极反应机制之间存在相关性。总体而言,这项研究对于扩大对砷形态转变与微生物电子传输系统活性之间紧密联系的认识,增进我们对BES操作的认识并走向其应用至关重要。

更新日期:2020-07-10
down
wechat
bug