当前位置: X-MOL 学术bioRxiv. Synth. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Production of benzylglucosinolate by engineering and optimizing the biosynthetic pathway in Saccharomyces cerevisiae
bioRxiv - Synthetic Biology Pub Date : 2020-07-09 , DOI: 10.1101/2020.07.08.193391
Cuiwei Wang , Christoph Crocoll , Christina Spuur Nødvig , Uffe Hasbro Mortensen , Sidsel Ettrup Clemmensen , Barbara Ann Halkier

Glucosinolates are amino acid-derived defense compounds characteristic of the Brassicales order. Benzylglucosinolate (BGLS) derived from phenylalanine is associated with health-promoting effects, which has primed a desire to produce BGLS in microorganisms for a stable and rich source. In this study, we engineered the BGLS production in Saccharomyces cerevisiae by either stably integrating the biosynthetic genes into the genome or introducing them from plasmids. A comparison of the two approaches exhibited a significantly higher level of BGLS production (9.3-fold) by expression of the genes from genome than from plasmids. Towards optimization of BGLS production from genes stably integrated into the genome, we enhanced expression of the entry point enzymes CYP79A2 and CYP83B1 resulting in a 2-fold increase in BGLS production, but also a 4.8-fold increase in the biosynthesis of the last intermediate desulfo- benzylglucosinolate (dsBGLS). To alleviate the metabolic bottleneck in the last step converting dsBGLS to BGLS by 3'-phosphoadenosine-5'-phosphosulfate (PAPS)-dependent sulfotransferase, SOT16, we first obtained an increased BGLS production by 1.7-fold when overexpressing SOT16. Next, we introduced APS kinase APK1 of Arabidopsis thaliana for efficient PAPS regeneration, which improved the level of BGLS production by 1.7-fold. Our work shows an optimized production of BGLS in S. cerevisiae and the effect of different approaches for engineering the biosynthetic pathway (plasmid expression and genome integration) on the production level of BGLS.

中文翻译:

通过工程改造和优化啤酒酵母生物合成途径生产苄基芥子油苷

芥子油苷是小s类特征的氨基酸衍生的防御化合物。源自苯丙氨酸的苄基芥子油酸酯(BGLS)具有促进健康的作用,这引发了人们希望在微生物中产生BGLS以获得稳定和丰富的来源。在这项研究中,我们通过稳定地将生物合成基因整合到基因组中或从质粒中引入基因,来设计酿酒酵母中BGLS的生产。两种方法的比较显示,通过基因组表达的基因表达比质粒表达显着更高的BGLS产生水平(9.3倍)。为了从稳定整合到基因组中的基因优化BGLS产量,我们增强了入口点酶CYP79A2和CYP83B1的表达,导致BGLS产量增加了2倍,但也增加了4。最后一个中间体脱硫苄基芥子油苷(dsBGLS)的生物合成增加8倍。为了减轻最后一步中依赖3'-磷酸腺苷-5'-磷酸硫酸盐(PAPS)的磺基转移酶SOT16将dsBGLS转化为BGLS的代谢瓶颈,当过表达SOT16时,我们首先使BGLS产量增加了1.7倍。接下来,我们引入了拟南芥的APS激酶APK1,以实现有效的PAPS再生,从而使BGLS产生水平提高了1.7倍。我们的工作显示了酿酒酵母中BGLS的优化生产,以及工程化生物合成途径(质粒表达和基因组整合)的不同方法对BGLS产量的影响。为了缓解最后一步中依赖3'-磷酸腺苷-5'-磷酸硫酸盐(PAPS)的磺基转移酶SOT16将dsBGLS转化为BGLS的代谢瓶颈,当过表达SOT16时,我们首先获得了BGLS产量增加1.7倍的结果。接下来,我们引入了拟南芥的APS激酶APK1,以实现有效的PAPS再生,从而使BGLS产生水平提高了1.7倍。我们的工作显示了酿酒酵母中BGLS的优化生产,以及工程化生物合成途径(质粒表达和基因组整合)的不同方法对BGLS产量的影响。为了减轻最后一步中依赖3'-磷酸腺苷-5'-磷酸硫酸盐(PAPS)的磺基转移酶SOT16将dsBGLS转化为BGLS的代谢瓶颈,当过表达SOT16时,我们首先使BGLS产量增加了1.7倍。接下来,我们引入了拟南芥的APS激酶APK1,以实现有效的PAPS再生,从而使BGLS产生水平提高了1.7倍。我们的工作表明酿酒酵母中BGLS的优化生产,以及工程化生物合成途径(质粒表达和基因组整合)的不同方法对BGLS生产水平的影响。我们引入了拟南芥的APS激酶APK1,以实现有效的PAPS再生,从而使BGLS产生水平提高了1.7倍。我们的工作表明酿酒酵母中BGLS的优化生产,以及工程化生物合成途径(质粒表达和基因组整合)的不同方法对BGLS生产水平的影响。我们引入了拟南芥的APS激酶APK1,以实现有效的PAPS再生,从而使BGLS产生水平提高了1.7倍。我们的工作显示了酿酒酵母中BGLS的优化生产,以及工程化生物合成途径(质粒表达和基因组整合)的不同方法对BGLS产量的影响。
更新日期:2020-07-09
down
wechat
bug