当前位置: X-MOL 学术J. Vac. Sci. Technol. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Utilizing plasma modified SnO2paper gas sensors to better understand gas-surface interactions at low temperatures
Journal of Vacuum Science & Technology A ( IF 2.4 ) Pub Date : 2020-05-21 , DOI: 10.1116/6.0000029
Kimberly A. M. Hiyoto 1 , Ellen R. Fisher 1
Affiliation  

Developing low temperature, low cost metal oxide gas sensors remains a critical but elusive goal. Additionally, a better understanding of gas-metal oxide interactions during sensing is required to achieve this goal as well as improving the performance of these devices. Here, the authors describe a paper-based gas sensor (PGS) utilizing SnO2 nanoparticles to detect ethanol, CO, and benzene. Proof-of-concept sensor data indicate that the response was increased and viable operating temperature was lowered (≤50 °C) via plasma surface modification techniques using an Ar/O2 gas mixture at a range of applied rf powers and precursor pressures. Temperature dependent response also demonstrates that sensor selectivity can be tuned with plasma treatment parameters. Ethanol response and recovery behavior at operating temperatures ≤50 °C indicate that sensors demonstrate real-time response at relatively low temperatures. Additionally, although the resistance of the PGS does not fully recover postgas exposure, the signal stability and continued response to ethanol with subsequent exposures indicate that sensors could potentially be used multiple times. Optical emission spectroscopy identified species involved in plasma surface modification processes and x-ray photoelectron spectroscopy elucidated how these changes in surface chemistry correlate to PGS performance. The combination of these techniques provides insight into the driving factors controlling the gas detection process. This approach to produce PGSs shows great promise for the fabrication of flexible, inexpensive devices capable of operating at much lower temperatures than current metal-oxide based sensors.

中文翻译:

利用等离子体改性的SnO2paper气体传感器更好地了解低温下的气体表面相互作用

开发低温,低成本金属氧化物气体传感器仍然是一个关键但难以实现的目标。另外,需要对传感过程中的气体-金属氧化物相互作用有一个更好的了解,以实现该目标并改善这些设备的性能。在此,作者描述了一种纸基气体传感器(PGS),该传感器利用SnO 2纳米颗粒检测乙醇,CO和苯。概念验证的传感器数据表明,通过使用Ar / O 2的等离子表面改性技术,可以提高响应并降低可行的工作温度(≤50°C)在一定的射频功率和前驱压力范围内混合气体。与温度有关的响应也表明,可以通过等离子体处理参数来调整传感器的选择性。在≤50°C的工作温度下,乙醇响应和恢复行为表明传感器在相对较低的温度下显示出实时响应。另外,尽管PGS的电阻不能完全恢复后气暴露,但信号稳定性和对乙醇的持续响应以及随后的暴露表明,传感器可能会多次使用。发射光谱法确定了涉及等离子体表面改性过程的物质,而X射线光电子能谱法则阐明了这些表面化学变化如何与PGS性能相关。这些技术的结合提供了对控制气体检测过程的驱动因素的了解。这种生产PGS的方法为制造灵活,廉价的设备提供了广阔的前景,该设备能够在比当前基于金属氧化物的传感器低得多的温度下工作。
更新日期:2020-07-09
down
wechat
bug