当前位置: X-MOL 学术ACS Appl. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Correction to Role of Sulfur Incorporation in p-Type Nickel Oxide (p-NiO) on n-Type Silicon (n-Si) Photoelectrodes for Water Oxidation Reactions
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2020-07-09 00:00:00 , DOI: 10.1021/acsaem.0c01342
Jemee Joe , Thi Anh Ho , Changdeuck Bae , Hyunjung Shin

The original Figure 1f and its corresponding caption for panel f do not match. The panel f caption described the water oxidation of Si/NiO with a band diagram, while the figure appeared to be the XRD spectra. Therefore, Figure 1 has been modified, which is the “band diagram of Si/NiO photoanode for water oxidation reaction”. The figure modification was not reflected at the time of revision. Fortunately, this mismatch does not affect the paper’s conclusion. It was our failure during the revision process, and we apologize for any inconvenience that the readers would have had. Figure 1. Data showing the physical and surface characteristic of ALD-grown NiO on Si substrate at 300 °C. (a, b) Surface morphology measured by atomic force microscopy (AFM) of 2 2 μm × 2 μm of a 20 nm thick NiO film. The rms value is 0.28 nm. The scale bar is 500 nm. (c) Graph of thickness vs deposition cycles (red) of ALD-grown NiO. The growth rate was obtained from linear fitting (black dotted line) which is 0.032 nm/cycle. (d) X-ray reflectometry (XRR) spectra of different thickness NiO. Open dots and solid lines indicate the measurement and simulation. (e) Grazing Incidence X-ray diffraction (GIXRD) patterns with different thicknesses confirm the rock-salt (NaCl) crystal structure of the NiO thin film. The peak between 55 and 60 with high intensity indicates the silicon substrate. (f) Energy band diagram, charge transfer processes in the n-Si/NiO heterojunction and photoelectrochemical OER at the NiO/electrolyte interface. VB and CB are valence band and conduction band of n-Si, respectively; Ef is the Fermi level of n-Si; Eg is the band gap of Si; EfNiO is the Fermi level of NiO; and EOER is water oxidation level. When Si is excited by photons with energy equal to or higher than its band gap (1.12 eV), electron–hole pairs are generated, which can be recombined in bulk or on the surface within a short time. Due to the drift potential in the space charge region, the generated carriers move toward the electrolyte interface and get involved in the electrochemical reaction, to the bulk Ohmic contact. This article has not yet been cited by other publications. Figure 1. Data showing the physical and surface characteristic of ALD-grown NiO on Si substrate at 300 °C. (a, b) Surface morphology measured by atomic force microscopy (AFM) of 2 2 μm × 2 μm of a 20 nm thick NiO film. The rms value is 0.28 nm. The scale bar is 500 nm. (c) Graph of thickness vs deposition cycles (red) of ALD-grown NiO. The growth rate was obtained from linear fitting (black dotted line) which is 0.032 nm/cycle. (d) X-ray reflectometry (XRR) spectra of different thickness NiO. Open dots and solid lines indicate the measurement and simulation. (e) Grazing Incidence X-ray diffraction (GIXRD) patterns with different thicknesses confirm the rock-salt (NaCl) crystal structure of the NiO thin film. The peak between 55 and 60 with high intensity indicates the silicon substrate. (f) Energy band diagram, charge transfer processes in the n-Si/NiO heterojunction and photoelectrochemical OER at the NiO/electrolyte interface. VB and CB are valence band and conduction band of n-Si, respectively; Ef is the Fermi level of n-Si; Eg is the band gap of Si; EfNiO is the Fermi level of NiO; and EOER is water oxidation level. When Si is excited by photons with energy equal to or higher than its band gap (1.12 eV), electron–hole pairs are generated, which can be recombined in bulk or on the surface within a short time. Due to the drift potential in the space charge region, the generated carriers move toward the electrolyte interface and get involved in the electrochemical reaction, to the bulk Ohmic contact.

中文翻译:

校正硫掺入水氧化反应的n型硅(n-Si)光电极上的p型氧化镍(p-NiO)中的作用

原始图1f及其对应的面板f标题不匹配。面板说明用能带图描述了Si / NiO的水氧化,而该图似乎是XRD光谱。因此,对图1进行了修改,它是“用于水氧化反应的Si / NiO光电阳极的能带图”。修改时未反映图形修改。幸运的是,这种不匹配不会影响论文的结论。这是我们在修订过程中的失败,对于给读者带来的任何不便,我们深表歉意。图1.数据显示了在300°C的硅衬底上ALD生长的NiO的物理和表面特性。(a,b)通过原子力显微镜(AFM)在20 nm厚的NiO膜上形成2 2μm×2μm的表面形态。均方根值是0.28 nm。比例尺为500 nm。(c)ALD生长的NiO的厚度与沉积周期(红色)的关系图。从线性拟合(黑色虚线)获得的生长速率为0.032nm /循环。(d)不同厚度NiO的X射线反射仪(XRR)光谱。空心点和实线表示测量和模拟。(e)掠入射的厚度不同的X射线衍射(GIXRD)图证实了NiO薄膜的岩盐(NaCl)晶体结构。强度在55和60之间的峰表示硅衬底。(f)能带图,n-Si / NiO异质结中的电荷转移过程以及NiO /电解质界面处的光电化学OER。VB和CB分别是n-Si的价带和导带;从线性拟合(黑色虚线)获得的生长速率为0.032nm /循环。(d)不同厚度NiO的X射线反射仪(XRR)光谱。空心点和实线表示测量和模拟。(e)掠入射的厚度不同的X射线衍射(GIXRD)图证实了NiO薄膜的岩盐(NaCl)晶体结构。强度在55和60之间的峰表示硅衬底。(f)能带图,n-Si / NiO异质结中的电荷转移过程以及NiO /电解质界面处的光电化学OER。VB和CB分别是n-Si的价带和导带;从线性拟合(黑色虚线)获得的生长速率为0.032nm /循环。(d)不同厚度NiO的X射线反射仪(XRR)光谱。空心点和实线表示测量和模拟。(e)掠入射的厚度不同的X射线衍射(GIXRD)图证实了NiO薄膜的岩盐(NaCl)晶体结构。强度在55和60之间的峰表示硅衬底。(f)能带图,n-Si / NiO异质结中的电荷转移过程以及NiO /电解质界面处的光电化学OER。VB和CB分别是n-Si的价带和导带;(e)掠入射的厚度不同的X射线衍射(GIXRD)图证实了NiO薄膜的岩盐(NaCl)晶体结构。强度在55和60之间的峰表示硅衬底。(f)能带图,n-Si / NiO异质结中的电荷转移过程以及NiO /电解质界面处的光电化学OER。VB和CB分别是n-Si的价带和导带;(e)掠入射的厚度不同的X射线衍射(GIXRD)图案证实了NiO薄膜的岩盐(NaCl)晶体结构。强度在55和60之间的峰表示硅衬底。(f)能带图,n-Si / NiO异质结中的电荷转移过程以及NiO /电解质界面处的光电化学OER。VB和CB分别是n-Si的价带和导带;E f是n-Si的费米能级;E g是Si的带隙;E fNiO是NiO的费米能级;和E OER是水的氧化水平。当Si被能量等于或高于其带隙(1.12 eV)的光子激发时,会生成电子-空穴对,这些电子-空穴对可在短时间内大量或重新结合在表面上。由于空间电荷区域中的漂移电势,生成的载流子向电解质界面移动并参与电化学反应,从而进入整体欧姆接触。本文尚未被其他出版物引用。图1.数据显示了在300°C的硅衬底上ALD生长的NiO的物理和表面特性。(a,b)通过原子力显微镜(AFM)在20 nm厚的NiO膜上形成2 2μm×2μm的表面形态。均方根值是0.28 nm。比例尺为500 nm。(c)ALD生长的NiO的厚度与沉积周期(红色)的关系图。从线性拟合(黑色虚线)获得的生长速率为0.032nm /循环。(d)不同厚度NiO的X射线反射仪(XRR)光谱。空心点和实线表示测量和模拟。(e)掠入射的厚度不同的X射线衍射(GIXRD)图案证实了NiO薄膜的岩盐(NaCl)晶体结构。强度在55和60之间的峰表示硅衬底。(f)能带图,n-Si / NiO异质结中的电荷转移过程以及NiO /电解质界面处的光电化学OER。VB和CB分别是n-Si的价带和导带;(e)掠入射的厚度不同的X射线衍射(GIXRD)图案证实了NiO薄膜的岩盐(NaCl)晶体结构。强度在55和60之间的峰表示硅衬底。(f)能带图,n-Si / NiO异质结中的电荷转移过程以及NiO /电解质界面处的光电化学OER。VB和CB分别是n-Si的价带和导带;(e)掠入射的厚度不同的X射线衍射(GIXRD)图案证实了NiO薄膜的岩盐(NaCl)晶体结构。强度在55和60之间的峰表示硅衬底。(f)能带图,n-Si / NiO异质结中的电荷转移过程以及NiO /电解质界面处的光电化学OER。VB和CB分别是n-Si的价带和导带;E f是n-Si的费米能级;E g是Si的带隙;E fNiO是NiO的费米能级;和Ë OER是水氧化水平。当Si被能量等于或高于其带隙(1.12 eV)的光子激发时,会生成电子-空穴对,它们可以在短时间内大量或重新结合在表面上。由于空间电荷区域中的漂移电势,生成的载流子向电解质界面移动并参与电化学反应,从而进入整体欧姆接触。
更新日期:2020-07-09
down
wechat
bug