当前位置: X-MOL 学术Int. J. Numer. Anal. Methods Geomech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical formulation and implementation of Euler‐Bernoulli pile elements considering soil‐structure‐interaction responses
International Journal for Numerical and Analytical Methods in Geomechanics ( IF 3.4 ) Pub Date : 2020-07-08 , DOI: 10.1002/nag.3113
Xueyou Li 1 , Jianhong Wan 1 , Siwei Liu 1 , Limin Zhang 2
Affiliation  

Pile serves as an essential component for transferring loads from superstructures to the soil ground. Proper consideration of soil‐structure interaction (SSI) responses is crucial in evaluating the pile capacity and deflections under external loads. In the current design practices, semi‐empirical or linear‐elastic analyses are utilized, which are often overly conservative and unable to properly consider the nonlinear SSI responses. Thus, this paper presents a new Euler‐Bernoulli pile element for robustly and efficiently simulating the piles considering the SSI responses. The nonlinear springs distributed continuously along with the pile are directly integrated into the element formulations. A quasi‐analytical solution based on the Gauss‐Legendre method is utilized in the summation processes of the total potential energy to significantly simplify the mathematical expressions and ease difficulties in programming. The element tangent stiffness matrix and secant relations are respectively formulated for predicting the displacement and eliminating the accumulative errors in a Newton‐Raphson incremental‐iterative numerical procedure. Because a pile might exhibit large deflections in soft soils, the kinematic motion description using the Updated Lagrangian (UL) approach is developed where the equilibrium conditions are determined by referring to the last configurations. Finally, several examples are provided to validate the accuracy and efficiency of the proposed method.

中文翻译:

考虑土-结构-相互作用响应的欧拉-伯努利桩单元的数值公式及实现

桩是将载荷从上部结构传递到土壤的重要组成部分。在评估外部荷载作用下的桩容量和挠度时,正确考虑土壤-结构相互作用(SSI)响应至关重要。在当前的设计实践中,使用了半经验分析或线性弹性分析,这些分析通常过于保守,无法正确考虑非线性SSI响应。因此,本文提出了一种新的Euler-Bernoulli桩单元,该桩单元考虑了SSI响应,可以有效,可靠地模拟桩。与桩连续分布的非线性弹簧直接集成到单元公式中。在总势能的求和过程中使用了基于高斯-勒根德方法的准解析解,以显着简化数学表达式并减轻编程难度。在牛顿-拉夫森增量-迭代数值程序中,分别制定了单元的切线刚度矩阵和正割关系,以预测位移并消除累积误差。由于桩在软土中可能会出现较大的挠度,因此开发了使用更新的拉格朗日(UL)方法进行的运动学描述,其中通过参考最后的构造来确定平衡条件。最后,提供了一些示例来验证所提出方法的准确性和效率。在牛顿-拉夫森增量-迭代数值程序中,分别制定了单元的切线刚度矩阵和正割关系,以预测位移并消除累积误差。由于桩在软土中可能会出现较大的挠度,因此开发了使用更新的拉格朗日(UL)方法进行的运动学描述,其中通过参考最后的构造来确定平衡条件。最后,提供了一些示例来验证所提出方法的准确性和效率。在牛顿-拉夫森增量-迭代数值程序中,分别制定了单元的切线刚度矩阵和正割关系,以预测位移并消除累积误差。由于桩在软土中可能会出现较大的挠度,因此开发了使用更新的拉格朗日(UL)方法进行的运动学描述,其中通过参考最后的构造来确定平衡条件。最后,提供了一些示例来验证所提出方法的准确性和效率。开发了使用更新的拉格朗日(UL)方法的运动学运动描述,其中通过参考最后的配置确定平衡条件。最后,提供了一些示例来验证所提出方法的准确性和效率。开发了使用更新的拉格朗日(UL)方法的运动学运动描述,其中通过参考最后的配置确定平衡条件。最后,提供了一些示例来验证所提出方法的准确性和效率。
更新日期:2020-07-08
down
wechat
bug