当前位置: X-MOL 学术J. Number Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Polynomial analogue of the Smarandache function
Journal of Number Theory ( IF 0.7 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.jnt.2020.05.015
Xiumei Li , Min Sha

In the integer case, the Smarandache function of a positive integer $n$ is defined to be the smallest positive integer $k$ such that $n$ divides the factorial $k!$. In this paper, we first define a natural order for polynomials in $\mathbb{F}_q[t]$ over a finite field $\mathbb{F}_q$ and then define the Smarandache function of a non-zero polynomial $f \in \mathbb{F}_q[t]$, denoted by $S(f)$, to be the smallest polynomial $g$ such that $f$ divides the Carlitz factorial of $g$. In particular, we establish an analogue of a problem of Erd{\H o}s, which implies that for almost all polynomials $f$, $S(f)=t^d$, where $d$ is the maximal degree of the irreducible factors of $f$.

中文翻译:

Smarandache 函数的多项式模拟

在整数情况下,正整数 $n$ 的 Smarandache 函数被定义为最小正整数 $k$,使得 $n$ 除以阶乘 $k!$。在本文中,我们首先在有限域 $\mathbb{F}_q$ 上定义 $\mathbb{F}_q[t]$ 中多项式的自然阶,然后定义非零多项式 $f 的 Smarandache 函数\in \mathbb{F}_q[t]$,用$S(f)$ 表示,是最小的多项式$g$,使得$f$ 除以$g$ 的Carlitz 阶乘。特别地,我们建立了一个 Erd{\H o}s 问题的类比,这意味着对于几乎所有的多项式 $f$,$S(f)=t^d$,其中 $d$ 是最大次数$f$ 的不可约因子。
更新日期:2020-12-01
down
wechat
bug