当前位置: X-MOL 学术Arch. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quadratic Gorenstein algebras with many surprising properties
Archiv der Mathematik ( IF 0.5 ) Pub Date : 2020-07-09 , DOI: 10.1007/s00013-020-01492-x
Jason McCullough , Alexandra Seceleanu

Let $k$ be a field of characteristic $0$. Using the method of idealization, we show that there is a non-Koszul, quadratic, Artinian, Gorenstein, standard graded $k$-algebra of regularity $3$ and codimension $8$, answering a question of Mastroeni, Schenck, and Stillman. We also show that this example is minimal in the sense that no other idealization that is non-Koszul, quadratic, Artinian, Gorenstein algebra, with regularity $3$ has smaller codimension. We also construct an infinite family of graded, quadratic, Artinian, Gorenstein algebras $A_m$, indexed by an integer $m \ge 2$, with the following properties: (1) there are minimal first syzygies of the defining ideal in degree $m+2$, (2) for $m \ge 3$, $A_m$ is not Koszul, (3) for $m \ge 7$, the Hilbert function of $A_m$ is not unimodal, and thus (4) for $m \ge 7$, $A_m$ does not satisfy the weak or strong Lefschetz properties. In particular, the subadditivity property fails for quadratic Gorenstein ideals. Finally, we show that the idealization of a construction of Roos yields non-Koszul quadratic Gorenstein algebras such that the residue field $k$ has a linear resolution for precisely $\alpha$ steps for any integer $\alpha \ge 2$. Thus there is no finite test for the Koszul property even for quadratic Gorenstein algebras.

中文翻译:

具有许多惊人性质的二次 Gorenstein 代数

令 $k$ 为特征 $0$ 的字段。使用理想化方法,我们证明存在非 Koszul、二次、Artinian、Gorenstein、标准分级 $k$-正则性 $3$ 和辅维 $8$ 的代数,回答了 Mastroeni、Schenck 和 Stillman 的问题。我们还表明,这个例子是最小的,因为没有其他非 Koszul、二次、Artinian、Gorenstein 代数的理想化具有更小的余维。我们还构造了一个无限的分级、二次、Artinian、Gorenstein 代数族 $A_m$,由一个整数 $m\ge 2$ 索引,具有以下性质:(1)在度数 $ 中存在定义理想的最小第一合子m+2$, (2) 对于 $m \ge 3$, $A_m$ 不是 Koszul, (3) 对于 $m \ge 7$, $A_m$ 的希尔伯特函数不是单峰的,因此 (4)对于 $m \ge 7$,$A_m$ 不满足弱或强 Lefschetz 性质。特别是,二次 Gorenstein 理想的次可加性属性失败。最后,我们证明了 Roos 构造的理想化产生了非 Koszul 二次 Gorenstein 代数,使得残差场 $k$ 对于任何整数 $\alpha\ge 2$ 的精确 $\alpha$ 步长具有线性分辨率。因此,即使对于二次 Gorenstein 代数,也没有对 Koszul 性质的有限检验。
更新日期:2020-07-09
down
wechat
bug