当前位置: X-MOL 学术Plant Ecol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Soil temperature drives elevational patterns of reproductive allometry in a biodiversity hotspot
Plant Ecology ( IF 1.9 ) Pub Date : 2020-07-09 , DOI: 10.1007/s11258-020-01055-8
Kai Chen , Qing Liu , Zi-Hong Chen , Zu-Lei Li

Understanding the geographic patterns of reproductive allocation helps in clarifying the selective forces that shape the reproductive strategies of plants. However, studies on the elevational patterns of reproductive allocation remain limited. Moreover, although soil attributes have long been suspected to drive elevational patterns of reproductive allocation, few studies have explored this relationship. Delaying reproduction and allocating a high proportion of biomass to vegetative organs may be risky for plants living under high-elevation habitats, as these two processes can potentially lead to plant reproductive failure due to the low temperatures and short growing seasons at high elevations. Thus, we hypothesize that reproductive effort will increase with elevation and the elevational pattern of reproductive allocation will be largely driven by soil attributes, given their covariation with elevation. To test these hypotheses, we determined the vegetative and reproductive biomass of individual Impatiens arguta (Balsaminaceae) plants across 12 populations in the Gaoligong Mountains (China), and collected data on soil temperature, nutrients, moisture, and pH for each population. Based on standard major axis regression and linear regression models, we found that (1) both vegetative and reproductive biomass decreased with elevation; (2) all populations demonstrated significant allometric slopes (i.e., linear coefficients of log[reproductive biomass] − log[vegetative biomass] regressions) > 1; (3) allometric slopes decreased with elevation; and (4) soil temperature was a better predictor of the allometric slope than elevation, i.e., the allometric slope decreased with soil temperature. These results suggest that plant species growing at high elevation invest proportionately more resources to reproduction as an adaptation to low-temperature environments, and reproductive output is heavily dependent on vegetative growth. This study provides the first evidence of soil temperature driving reproductive allocation patterns, which suggests that plant species will favor allocation to growth under increasing soil temperatures with climate warming.

更新日期:2020-07-09
down
wechat
bug