当前位置: X-MOL 学术CSI Trans. ICT › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Research work under Visvesvaraya YFRF
CSI Transactions on ICT Pub Date : 2020-07-09 , DOI: 10.1007/s40012-020-00307-2
Rajib Kumar Jha , Sumit Kumar

This research work concentrates on developing new methodologies for weak signal detection, which are further used in the watermark detection application. The proposed detectors perform comparable to or better than most of the state-of-the-art techniques.Stochastic resonance plays a significant role in weak signal detection. Injection of precalculated noise is a big concern for us. Noises i.e., symmetric and asymmetric have been utilized for getting an improved version of the weak signal detector. With equality and non-equality constraints, we use the particle swarm optimization method to optimize the objective function. After that, we investigate a new detector based on the fractional operator. The noisy signal is convolved with the coefficients of fractional order filter. The proposed method has been tested with different standard performance parameters. The results of the proposed detector have been compared with state-of-the-art detectors such as a threshold detector (TD), neural network-based detector etc. The robustness of the proposed detector with respect to the parameters of signal and noise has also been explored.The problem of weak DC signal detection present in non-Gaussian noise is always a troublesome because of the non-linearity of the test statistic. We have used the concept of stochastic resonance in a conventional neural network-based detector. A predefined noise is injected during the back-propagation algorithm in order to minimize the error. The reduction in errors (in terms of enhancement in the probability of detection, \(P_D\) at a constant value of the probability of false alarm, \(P_{FA}\)) and faster convergence give a right justification to use the concept of stochastic resonance in the neural network-based detector.

中文翻译:

Visvesvaraya YFRF下的研究工作

这项研究工作集中于开发用于弱信号检测的新方法,并将其进一步用于水印检测应用中。所提出的检测器的性能与大多数最新技术相当或更好。随机共振在弱信号检测中起着重要作用。注入预先计算的噪声对我们来说是一个大问题。噪声(即对称和非对称)已用于获得弱信号检测器的改进版本。在具有相等和非相等约束的情况下,我们使用粒子群优化方法来优化目标函数。之后,我们研究了一种基于分数算子的新检测器。噪声信号与分数阶滤波器的系数卷积。所提出的方法已经用不同的标准性能参数进行了测试。拟议的检测器的结果已与最先进的检测器(例如阈值检测器(TD),基于神经网络的检测器等)进行了比较。拟议的检测器相对于信号和噪声参数的鲁棒性由于测试统计量的非线性,非高斯噪声中存在的弱直流信号检测问题始终是一个麻烦的问题。我们在传统的基于神经网络的检测器中使用了随机共振的概念。在反向传播算法期间注入了预定义的噪声,以使误差最小。错误的减少(就检测概率而言,拟议的检测器的结果已与最先进的检测器(例如阈值检测器(TD),基于神经网络的检测器等)进行了比较。拟议的检测器相对于信号和噪声参数的鲁棒性由于测试统计量的非线性,非高斯噪声中存在的弱直流信号检测问题始终是一个麻烦的问题。我们在传统的基于神经网络的检测器中使用了随机共振的概念。在反向传播算法期间注入了预定义的噪声,以使误差最小。错误的减少(就检测概率而言,拟议的检测器的结果已与最先进的检测器(例如阈值检测器(TD),基于神经网络的检测器等)进行了比较。拟议的检测器相对于信号和噪声参数的鲁棒性由于测试统计量的非线性,非高斯噪声中存在的弱直流信号检测问题始终是一个麻烦的问题。我们在传统的基于神经网络的检测器中使用了随机共振的概念。在反向传播算法期间注入了预定义的噪声,以使误差最小。错误的减少(就检测概率而言,还研究了所提出的检测器相对于信号和噪声参数的鲁棒性。由于测试统计数据的非线性,非高斯噪声中存在的弱直流信号检测问题始终是一个麻烦。我们在传统的基于神经网络的检测器中使用了随机共振的概念。在反向传播算法期间注入了预定义的噪声,以使误差最小。减少错误(就检测概率而言,还研究了所提出的检测器相对于信号和噪声参数的鲁棒性。由于测试统计数据的非线性,非高斯噪声中存在的弱直流信号检测问题始终是一个麻烦。我们在传统的基于神经网络的检测器中使用了随机共振的概念。在反向传播算法期间注入了预定义的噪声,以使误差最小。减少错误(就检测概率而言,在反向传播算法期间注入了预定义的噪声,以使误差最小。错误的减少(就检测概率而言,在反向传播算法期间注入了预定义的噪声,以使误差最小。减少错误(就检测概率而言,\(P_D \)处于错误警报概率的恒定值\(P_ {FA} \))和更快的收敛性给出了在基于神经网络的检测器中使用随机共振概念的正确理由。
更新日期:2020-07-09
down
wechat
bug