当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The optical nanosizer - quantitative size and shape analysis of individual nanoparticles by high-throughput widefield extinction microscopy.
Nanoscale ( IF 5.8 ) Pub Date : 2020-07-08 , DOI: 10.1039/d0nr03504a
Lukas M Payne 1 , Wiebke Albrecht , Wolfgang Langbein , Paola Borri
Affiliation  

Nanoparticles are widely utilised for a range of applications, from catalysis to medicine, requiring accurate knowledge of their size and shape. Current techniques for particle characterisation are either not very accurate or time consuming and expensive. Here we demonstrate a rapid and quantitative method for particle analysis based on measuring the polarisation-resolved optical extinction cross-section of hundreds of individual nanoparticles using wide-field microscopy, and determining the particle size and shape from the optical properties. We show measurements on three samples consisting of nominally spherical gold nanoparticles of 20 nm and 30 nm diameter, and gold nanorods of 30 nm length and 10 nm diameter. Nanoparticle sizes and shapes in three dimensions are deduced from the measured optical cross-sections at different wavelengths and light polarisation, by solving the inverse problem, using an ellipsoid model of the particle polarisability in the dipole limit. The sensitivity of the method depends on the experimental noise and the choice of wavelengths. We show an uncertainty down to about 1 nm in mean diameter, and 10% in aspect ratio when using two or three color channels, for a noise of about 50 nm2 in the measured cross-section. The results are in good agreement with transmission electron microscopy, both 2D projection and tomography, of the same sample batches. Owing to its combination of experimental simplicity, ease of access to statistics over many particles, accuracy, and geometrical particle characterisation in 3D, this “optical nanosizer” method has the potential to become the technique of choice for quality control in next-generation particle manufacturing.

中文翻译:

光学纳米仪-通过高通量宽场消光显微镜对单个纳米颗粒进行定量大小和形状分析。

纳米颗粒被广泛用于从催化到医学的各种应用中,需要对它们的大小和形状有准确的了解。当前的用于颗粒表征的技术不是非常准确,或者是耗时且昂贵的。在这里,我们展示了一种快速而定量的粒子分析方法,该方法基于使用广域显微镜测量数百个单个纳米粒子的偏振分辨光学消光截面,并从光学性质确定粒径和形状。我们显示了三个样品的测量值,这些样品由标称球形的20 nm和30 nm直径的金纳米颗粒以及30 nm长度和10 nm直径的金纳米棒组成。通过解决反问题,使用偶极子极限下的粒子极化率的椭圆模型,从不同波长和光偏振下的光学横截面推导出三维尺寸和形状的纳米粒子。该方法的灵敏度取决于实验噪声和波长的选择。当使用两个或三个颜色通道时,对于约50 nm的噪声,我们显示出平均直径低至约1 nm,宽高比为10%的不确定性在测量的横截面中为2。结果与同一批样品的透射电子显微镜(二维投影和断层扫描)非常吻合。由于具有实验简便性,易于访问许多粒子统计信息,准确性和3D几何粒子表征等优点,因此这种“光学纳米化”方法有可能成为下一代粒子制造中质量控制的首选技术。
更新日期:2020-08-06
down
wechat
bug