当前位置: X-MOL 学术Dalton Trans. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering coordination polymer-derived one-dimensional porous S-doped Co3O4 nanorods with rich oxygen vacancies as high-performance electrode materials for hybrid supercapacitors.
Dalton Transactions ( IF 4 ) Pub Date : 2020-07-08 , DOI: 10.1039/d0dt02029j
Youjing Li 1 , Weiwei Li 1 , Cui Yang 2 , Kai Tao 3 , Qingxiang Ma 4 , Lei Han 5
Affiliation  

Structure and defect manipulation are regarded as efficacious strategies to boost the electrochemical activity of electrode materials. Herein, the construction of one-dimensional (1D) porous S-doped Co3O4 nanorods with rich oxygen vacancies is demonstrated through a facile metal–organic framework-engaged strategy. Starting from a Co-NTA (NTA = nitrilotriacetic acid) precursor, the S-doped Co3O4 nanorods were obtained after calcination and sulfurization. As a faradaic electrode material, the S-doped Co3O4 nanorods exhibited enhanced specific capacitance (319.3 C g−1 at 0.5 A g−1) in comparison with the Co3O4 intermediate product (98.3 C g−1) and the Co-NTA precursor (40.2 C g−1). Besides, it showed an ultra-high rate capability of 83.3% with a 20-fold increase in current density (10 A g−1). The hybrid supercapacitor comprising the S-doped Co3O4 (cathode) and the activated carbon (anode) showed a high energy density of 38.1 W h kg−1 at a power density of 800 W kg−1, and 31.1 W h kg−1 was maintained at 8000 W kg−1. It also has excellent electrochemical stability, and 87.57% of its initial capacitance was maintained after 5000 cycles, demonstrating great prospects in electrochemical energy storage applications. The excellent energy storage property of the S-doped Co3O4 is due to its unique 1D S-doped Co3O4 porous nanorod structure, i.e., large surface area, easy diffusion of ions, good conductivity, and rich redox reactions. This work may pave the way for the fabrication of desirable electrode materials through vacancy defects and nano-/microstructure engineering.

中文翻译:

富含氧空位的工程配位聚合物衍生的一维多孔S掺杂Co3O4纳米棒,作为混合超级电容器的高性能电极材料。

结构和缺陷处理被认为是提高电极材料电化学活性的有效策略。在此,通过一种简便的金属-有机骨架参与策略证明了具有富氧空位的一维(1D)多孔S掺杂Co 3 O 4纳米棒的构建。从Co-NTA(NTA =次氮基三乙酸)前体开始,在煅烧和硫化后获得S掺杂的Co 3 O 4纳米棒。作为法拉第电极材料中,S-掺杂钴3 ö 4纳米棒表现出增强的比电容(319.3 C g还-1在0.5 A克-1与联合比较)3 Ô4种中间产物(98.3 C g -1)和Co-NTA前体(40.2 C g -1)。此外,它显示出83.3%的超高倍率能力,电流密度(10 A g -1)增加了20倍。包含S掺杂的Co 3 O 4(阴极)和活性炭(阳极)的混合超级电容器在功率密度为800 W kg -1和31.1 W h kg时显示出38.1 W h kg -1的高能量密度。 -1维持在8000 W kg -1。它还具有出色的电化学稳定性,在5000次循环后仍可保持其初始电容的87.57%,在电化学储能应用中具有广阔的前景。S掺杂的Co 3 O 4的优异储能性能是由于其独特的一维S掺杂的Co 3 O 4多孔纳米棒结构,表面积大,离子易于扩散,导电性好以及氧化还原反应丰富。这项工作可以通过空位缺陷和纳米/微结构工程为所需的电极材料的制造铺平道路。
更新日期:2020-08-04
down
wechat
bug