当前位置: X-MOL 学术Nano Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dual-Shelled Multidoped Hollow Carbon Nanocages with Hierarchical Porosity for High-Performance Oxygen Reduction Reaction in Both Alkaline and Acidic Media.
Nano Letters ( IF 9.6 ) Pub Date : 2020-07-08 , DOI: 10.1021/acs.nanolett.0c00081
Teng Wang 1 , Chao Yang 2 , Yijiang Liu 1 , Mei Yang 1 , Xufeng Li 1 , Yan He 1 , Huaming Li 1 , Hongbiao Chen 1 , Zhiqun Lin 2
Affiliation  

The rational design and facile synthesis of metal organic framework (MOF)-derived carbon materials with high oxygen reduction reaction (ORR) activity still remains challenging. Herein, we report on a simple yet robust route to dual-shelled Co, N, and S co-doped hollow carbon nanocages (denoted Co-N/S-DSHCN) with outstanding ORR performance. The concurrent compositional and structural engineering of the zeolitic imidazolate framework (ZIF-67), enabled by its coating with trithiocyanuric acid (TCA), yields core-shelled precursor particles which are subsequently carbonized into Co-N/S-DSHCN. Notably, Co-N/S-DSHCN-3.5 outperforms the commercial Pt/C, representing a +25 mV onset potential (Eon) and a +43 mV half-wave potential (E1/2) in 0.1 M KOH and a comparable E1/2 to Pt/C in 0.5 M H2SO4, respectively. Such impressive ORR activities of Co-N/S-DSHCN-3.5 originate from the effective synergy of Co, N, and S co-doping (i.e., a compositional tuning) in conjunction with a unique dual-shelled hollow architecture containing hierarchical porosity (i.e., a structural tailoring).

中文翻译:

具有分层孔隙率的双壳多掺杂空心碳纳米笼,用于碱性和酸性介质中的高性能氧还原反应。

具有高氧还原反应(ORR)活性的金属有机骨架(MOF)衍生的碳材料的合理设计和简便合成仍然具有挑战性。在本文中,我们报告了一种简单而稳健的途径,以具有出色的ORR性能的双壳Co,N和S共掺杂空心碳纳米笼(称为Co-N / S-DSHCN)。沸石咪唑酸盐骨架(ZIF-67)的同时组成和结构工程设计,通过用三硫氰尿酸(TCA)进行涂层,可以得到核壳前体颗粒,随后将其碳化成Co-N / S-DSHCN。值得注意的是,Co-N / S-DSHCN-3.5的性能优于商用Pt / C,在0.1 M KOH和0.1M KOH中,其起始电势(E on)为+25 mV,半波电势(E 1/2)为+43 mV。可比在0.5 MH 2 SO 4中分别为E 1/2至Pt / C。Co-N / S-DSHCN-3.5如此令人印象深刻的ORR活性源自Co,N和S共掺杂(即组成调整)的有效协同作用,以及独特的包含分层孔隙率的双壳中空结构(即结构调整)。
更新日期:2020-08-12
down
wechat
bug