当前位置: X-MOL 学术Optica › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
40 Gbps heterostructure germanium avalanche photo receiver on a silicon chip
Optica ( IF 8.4 ) Pub Date : 2020-07-09 , DOI: 10.1364/optica.393537
Daniel Benedikovic , Léopold Virot , Guy Aubin , Jean-Michel Hartmann , Farah Amar , Xavier Le Roux , Carlos Alonso-Ramos , Eric Cassan , Delphine Marris-Morini , Paul Crozat , Frédéric Boeuf , Jean-Marc Fédéli , Christophe Kopp , Bertrand Szelag , Laurent Vivien

Photodetectors are cornerstone components in integrated optical circuits and are essential for applications underlying modern science and engineering. Structures harnessing conventional crystalline materials are typically at the heart of such devices. In particular, group-IV semiconductors such as silicon and germanium open up more possibilities for high-performing on-chip photodetection thanks to their favorable electrical and optical properties at near-infrared wavelengths and processing compatibility with modern chip manufacturing. However, scaling the performance of silicon-germanium photodetectors to technologically relevant levels and benefiting from improved speed, reduced driving bias, enhanced sensitivity, and lowered power consumption arguably remains key for densely integrated photonic links in mainstream shortwave infrared optical communications. Here we report on a reliable 40 Gbps direct detection of chip-integrated silicon-germanium avalanche p-i-n photo receiver driven with low-bias supplies at 1.55 µm wavelength. The avalanche photodetection scheme calls upon fabrication steps commonly used in complementary metal-oxide-semiconductor foundries, alleviating the need for complex epitaxial wafer structures and/or multiple ion implantation schemes. The photo receiver exhibits an internal multiplication gain of 120, a high gain-bandwidth product up to 210 GHz, and a low effective ionization coefficient of ${\sim}{0.25}$. Robust and stable photodetection at 40 Gbps of on–off keying modulation is achieved at low optical input powers, without any need for receiver electronic stages. Simultaneously, compact avalanche p-i-n photodetectors with submicrometric heterostructures promote error-free operation at transmission bit rates of 32 Gbps and 40 Gbps, with power sensitivities of ${-}{12.8}\;{\rm dBm}$ and ${-}{11.2}\;{\rm dBm}$, respectively (for ${{10}^{- 9}}$ error rate and without error correction coding during use). Such a performance in an on-chip avalanche photodetector is a significant step toward large-scale integrated optoelectronic systems. These achievements are promising for use in data center networks, optical interconnects, or quantum information technologies.

中文翻译:

硅芯片上的40 Gbps异质结构锗雪崩光电接收器

光电探测器是集成电路中的基石组件,对于现代科学和工程学的基础应用至关重要。利用常规晶体材料的结构通常是此类设备的核心。尤其是,IV族半导体(例如硅和锗)由于在近红外波长具有良好的电学和光学特性以及与现代芯片制造的工艺兼容性,为高性能的片上光电检测开辟了更多可能性。但是,将硅锗光电探测器的性能扩展到技术上相关的水平,并受益于提高速度,降低驱动偏置,提高灵敏度,降低功耗可以说仍然是主流短波红外光通信中密集集成光子链路的关键。在这里,我们报告了一个可靠的40 Gbps直接检测芯片集成的硅锗雪崩引脚光电接收器,该接收器由波长为1.55 µm的低偏置电源驱动。雪崩光电检测方案需要互补金属氧化物半导体铸造厂中常用的制造步骤,从而减轻了对复杂外延晶片结构和/或多种离子注入方案的需求。该光电接收器具有120的内部倍增增益,高达210 GHz的高增益带宽乘积和25的低有效电离系数。在这里,我们报告了一个可靠的40 Gbps直接检测芯片集成的硅锗雪崩引脚光电接收器,该接收器由波长为1.55 µm的低偏置电源驱动。雪崩光电检测方案需要互补金属氧化物半导体铸造厂中常用的制造步骤,从而减轻了对复杂外延晶片结构和/或多种离子注入方案的需求。该光电接收器具有120的内部倍增增益,高达210 GHz的高增益带宽乘积和低的有效电离系数。在这里,我们报告了一个可靠的40 Gbps直接检测芯片集成的硅锗雪崩引脚光电接收器,该接收器由波长为1.55 µm的低偏置电源驱动。雪崩光电检测方案需要互补金属氧化物半导体铸造厂中常用的制造步骤,从而减轻了对复杂外延晶片结构和/或多种离子注入方案的需求。该光电接收器具有120的内部倍增增益,高达210 GHz的高增益带宽乘积和低的有效电离系数。$ {\ sim} {0.25} $。在低光输入功率下,实现了40 Gbps开关键控调制的鲁棒和稳定光电检测,而无需接收器电子级。同时,具有亚微米级异质结构的紧凑型雪崩引脚光电探测器可在32 Gbps和40 Gbps传输比特率下实现无错误操作,功率灵敏度分别为$ {-} {12.8} \; {\ rm dBm} $$ {-} { 11.2} \; {\ rm dBm} $(分别用于$ {{10} ^ {-9}} $错误率,并且在使用过程中不进行错误校正编码)。片上雪崩光电检测器中的这种性能是朝着大规模集成光电系统迈出的重要一步。这些成就有望用于数据中心网络,光学互连或量子信息技术。
更新日期:2020-07-21
down
wechat
bug