当前位置: X-MOL 学术ACS Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced Infrared Emission by Thermally Switching the Excitation of Magnetic Polariton with Scalable Microstructured VO2 Metasurfaces
ACS Photonics ( IF 7 ) Pub Date : 2020-07-07 , DOI: 10.1021/acsphotonics.0c00760
Linshuang Long 1 , Sydney Taylor 1 , Liping Wang 1
Affiliation  

Dynamic radiative cooling attracts fast-increasing interest due to its adaptability to changing environment and promises for more energy-savings than the static counterpart. Here we demonstrate enhanced infrared emission by thermally switching the excitation of magnetic polariton with microstructured vanadium dioxide (VO2) metasurfaces fabricated via scalable and etch-free processes. Temperature-dependent infrared spectroscopy clearly shows that the spectral emittance of fabricated tunable metasurfaces at wavelengths from 2 to 6 μm is significantly enhanced when heated beyond its phase transition temperature, where the magnetic polariton is excited with metallic VO2. The tunable emittance spectra are also demonstrated to be insensitive to incidence and polarization angles such that the VO2 metasurface can be treated as a diffuse infrared emitter. Numerical optical simulation and analytical inductance-capacitance model elucidate the suppression or excitation of magnetic polariton with insulating or metallic VO2 upon phase transition. The effect of enhanced thermal emission with the tunable VO2 metasurface is experimentally demonstrated with a thermal vacuum test. For the same heating power of 0.2 W, the steady-state temperature of the tunable VO2 metasurface emitter after phase transition is found to be 20 °C lower than that of a reference V2O5 emitter whose static spectral emittance is almost the same as that of the VO2 metasurface before phase transition. The radiative thermal conductance for the tunable metasurface emitter is found to be 3.96 W/m2K with metallic VO2 at higher temperatures and 0.68 W/m2K with insulating VO2 at lower temperatures, clearly demonstrating almost 6-fold enhancement in radiative heat dissipation.

中文翻译:

通过热切换具有可伸缩微结构化VO 2超表面的磁极化子的激发来增强红外发射。

动态辐射冷却因其对变化的环境的适应性而吸引了快速增长的兴趣,并有望比静态辐射冷却节省更多能源。在这里,我们通过热切换磁极化子的激发与通过可扩展且无蚀刻工艺制造的微结构化二氧化钒(VO 2)超表面来演示增强的红外发射。与温度有关的红外光谱清楚地表明,当加热到超过其相变温度时,所制造的可调超颖表面在2至6μm波长处的光谱发射显着增强,其中金属VO 2激发了磁极化子。还证明了可调发射光谱对入射角和偏振角不敏感,因此VO 2超颖表面可被视为扩散红外发射器。数值光学仿真和解析电感电容模型阐明了相变时绝缘或金属VO 2对磁极化子的抑制或激发。通过热真空测试实验证明了可调VO 2超表面增强的热辐射效果。对于相同的0.2 W加热功率,发现相变后可调VO 2超表面发射器的稳态温度比参考V 2 O 5低20°C。静态光谱发射率与相变之前VO 2超表面的静态光谱发射率几乎相同的发射器。在较高温度下使用金属VO 2时,可调超表面发射器的辐射热导为3.96 W / m 2 K,在较低温度下使用绝缘VO 2时为0.68 W / m 2 K ,显然表明辐射增强了近6倍散热。
更新日期:2020-08-19
down
wechat
bug