当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Large-scale integration of artificial atoms in hybrid photonic circuits
Nature ( IF 50.5 ) Pub Date : 2020-07-08 , DOI: 10.1038/s41586-020-2441-3
Noel H Wan 1 , Tsung-Ju Lu 1 , Kevin C Chen 1 , Michael P Walsh 1 , Matthew E Trusheim 1 , Lorenzo De Santis 1 , Eric A Bersin 1 , Isaac B Harris 1 , Sara L Mouradian 1, 2 , Ian R Christen 1 , Edward S Bielejec 3 , Dirk Englund 1
Affiliation  

A central challenge in developing quantum computers and long-range quantum networks is the distribution of entanglement across many individually controllable qubits 1 . Colour centres in diamond have emerged as leading solid-state ‘artificial atom’ qubits 2 , 3 because they enable on-demand remote entanglement 4 , coherent control of over ten ancillae qubits with minute-long coherence times 5 and memory-enhanced quantum communication 6 . A critical next step is to integrate large numbers of artificial atoms with photonic architectures to enable large-scale quantum information processing systems. So far, these efforts have been stymied by qubit inhomogeneities, low device yield and complex device requirements. Here we introduce a process for the high-yield heterogeneous integration of ‘quantum microchiplets’—diamond waveguide arrays containing highly coherent colour centres—on a photonic integrated circuit (PIC). We use this process to realize a 128-channel, defect-free array of germanium-vacancy and silicon-vacancy colour centres in an aluminium nitride PIC. Photoluminescence spectroscopy reveals long-term, stable and narrow average optical linewidths of 54 megahertz (146 megahertz) for germanium-vacancy (silicon-vacancy) emitters, close to the lifetime-limited linewidth of 32 megahertz (93 megahertz). We show that inhomogeneities of individual colour centre optical transitions can be compensated in situ by integrated tuning over 50 gigahertz without linewidth degradation. The ability to assemble large numbers of nearly indistinguishable and tunable artificial atoms into phase-stable PICs marks a key step towards multiplexed quantum repeaters 7 , 8 and general-purpose quantum processors 9 – 12 . An approach for integrating a large number of solid-state qubits on a photonic integrated circuit is used to construct a 128-channel artificial atom chip containing diamond quantum emitters.

中文翻译:

人工原子在混合光子电路中的大规模集成

开发量子计算机和远程量子网络的一个核心挑战是纠缠分布在许多单独可控的量子位 1 之间。钻石中的色心已成为领先的固态“人造原子”量子位 2 、 3 ,因为它们能够实现按需远程纠缠 4 、相干时间长达一分钟的十多个辅助量子位的相干控制 5 和记忆增强的量子通信 6 . 下一步的关键是将大量人造原子与光子架构集成,以实现大规模量子信息处理系统。到目前为止,这些努力一直受到量子位不均匀性、低器件良率和复杂器件要求的阻碍。在这里,我们介绍了一种在光子集成电路 (PIC) 上高产异质集成“量子微芯片”(包含高度相干色心的金刚石波导阵列)的过程。我们使用该工艺在氮化铝 PIC 中实现了 128 通道、无缺陷的锗空位和硅空位色心阵列。光致发光光谱揭示了锗空位(硅空位)发射器的长期、稳定和窄平均光线宽为 54 兆赫(146 兆赫),接近寿命限制的 32 兆赫(93 兆赫)线宽。我们表明,可以通过集成调谐超过 50 GHz 来原位补偿单个色心光学转换的不均匀性,而不会降低线宽。将大量几乎无法区分和可调的人造原子组装成相位稳定的 PIC 的能力标志着迈向多路复用量子中继器 7、8 和通用量子处理器 9-12 的关键一步。一种在光子集成电路上集成大量固态量子位的方法被用来构建一个包含金刚石量子发射器的 128 通道人造原子芯片。
更新日期:2020-07-08
down
wechat
bug