当前位置: X-MOL 学术Adv. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lithium Garnet Li7La3Zr2O12 Electrolyte for All‐Solid‐State Batteries: Closing the Gap between Bulk and Thin Film Li‐Ion Conductivities
Advanced Materials Interfaces ( IF 4.3 ) Pub Date : 2020-07-08 , DOI: 10.1002/admi.202000425
Jordi Sastre 1 , Agnieszka Priebe 2 , Max Döbeli 3 , Johann Michler 2 , Ayodhya N. Tiwari 1 , Yaroslav E. Romanyuk 1
Affiliation  

The high ionic conductivity and wide electrochemical stability of the lithium garnet Li7La3Zr2O12 (LLZO) make it a viable solid electrolyte for all‐solid‐state lithium batteries with superior capacity and power densities. Contrary to common ceramic processing routes of bulk pellets, thin film solid electrolytes could enable large‐area fabrication, and increase energy and power densities by reducing the bulkiness, weight and critically, the area‐specific resistance of the electrolyte. Fabrication of LLZO films has nonetheless been challenging because of lithium losses and formation of impurity phases that result in low densities and poor ionic conductivities as compared to bulk pellets. Here, a scalable method for fabricating submicron films of LLZO employing co‐sputtering from doped LLZO and Li2O targets is presented. A record ionic conductivity of 1.9 × 10−4 S cm–1 is measured for dense and uniform cubic‐phase Ga‐substituted LLZO films annealed at 700 °C in oxygen, which is comparable to the values in high‐temperature sintered pellets and outperforms by one order of magnitude the latest record for LLZO thin films as well as the typical conductivities in the well‐established LiPON electrolyte. This result is an important milestone to realize all‐vacuum deposited solid‐state batteries with higher power density.

中文翻译:

适用于全固态电池的石榴石锂Li7La3Zr2O12电解质:弥合块状和薄膜锂离子电导率之间的间隙

石榴石锂Li 7 La 3 Zr 2 O 12的高离子电导率和宽电化学稳定性(LLZO)使其成为全固态锂电池可行的固体电解质,具有出色的容量和功率密度。与散装颗粒的常规陶瓷加工路线相反,薄膜固体电解质可以实现大面积制造,并且可以通过减小电解质的体积,重量和临界面积比电阻来提高能量和功率密度。然而,由于锂的损失和杂质相的形成,LLZO膜的制造一直是具有挑战性的,与大颗粒相比,杂质相的形成导致低密度和差的离子电导率。在此,提出了一种可伸缩的方法,该方法利用掺杂的LLZO和Li 2 O靶材的共溅射技术制造LLZO的亚微米膜。创纪录的离子电导率为1.9×10 -4 S cm –1可以测量在700°C的氧气中退火的致密且均匀的立方相Ga取代的LLZO薄膜,这与高温烧结球团中的值和性能相比,高出一个数量级,也是LLZO薄膜的最新记录作为完善的LiPON电解质的典型电导率。这一结果是实现具有更高功率密度的全真空沉积固态电池的重要里程碑。
更新日期:2020-09-11
down
wechat
bug