当前位置: X-MOL 学术Glob. Ecol. Biogeogr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The global abundance of tree palms
Global Ecology and Biogeography ( IF 6.3 ) Pub Date : 2020-07-08 , DOI: 10.1111/geb.13123
Robert Muscarella 1, 2 , Thaise Emilio 3, 4 , Oliver L. Phillips 5 , Simon L. Lewis 5, 6 , Ferry Slik 7 , William J. Baker 4 , Thomas L. P. Couvreur 8 , Wolf L. Eiserhardt 2, 4 , Jens‐Christian Svenning 2, 9 , Kofi Affum‐Baffoe 10 , Shin‐Ichiro Aiba 11 , Everton C. Almeida 12 , Samuel S. Almeida 13 , Edmar Almeida Oliveira 14 , Esteban Álvarez‐Dávila 15 , Luciana F. Alves 16 , Carlos Mariano Alvez‐Valles 17 , Fabrício Alvim Carvalho 18 , Fernando Alzate Guarin 19 , Ana Andrade 20 , Luis E. O. C. Aragão 21, 22 , Alejandro Araujo Murakami 23 , Luzmila Arroyo 24 , Peter S. Ashton 25 , Gerardo A. Aymard Corredor 26, 27 , Timothy R. Baker 5 , Plinio Barbosa Camargo 28 , Jos Barlow 29 , Jean‐François Bastin 30 , Natacha Nssi Bengone 31 , Erika Berenguer 29, 32 , Nicholas Berry 33 , Lilian Blanc 34, 35 , Katrin Böhning‐Gaese 36, 37 , Damien Bonal 38 , Frans Bongers 39 , Matt Bradford 40 , Fabian Brambach 41 , Francis Q. Brearley 42 , Steven W. Brewer 43 , Jose L. C. Camargo 20 , David G. Campbell 44 , Carolina V. Castilho 45 , Wendeson Castro 46 , Damien Catchpole 47 , Carlos E. Cerón Martínez 48 , Shengbin Chen 49, 50 , Phourin Chhang 51 , Percival Cho 52 , Wanlop Chutipong 53 , Connie Clark 54 , Murray Collins 55 , James A. Comiskey 56, 57 , Massiel Nataly Corrales Medina 58 , Flávia R. C. Costa 59 , Heike Culmsee 60 , Heriberto David‐Higuita 61 , Priya Davidar 62 , Jhon Aguila‐Pasquel 63 , Géraldine Derroire 64 , Anthony Di Fiore 65 , Tran Van Do 66 , Jean‐Louis Doucet 67 , Aurélie Dourdain 64 , Donald R. Drake 68 , Andreas Ensslin 69 , Terry Erwin 70 , Corneille E. N. Ewango 71 , Robert M. Ewers 72 , Sophie Fauset 73 , Ted R. Feldpausch 74 , Joice Ferreira 75 , Leandro Valle Ferreira 76 , Markus Fischer 69 , Janet Franklin 77 , Gabriella M. Fredriksson 78 , Thomas W. Gillespie 79 , Martin Gilpin 5 , Christelle Gonmadje 80, 81 , Arachchige Upali Nimal Gunatilleke 82 , Khalid Rehman Hakeem 83 , Jefferson S. Hall 84 , Keith C. Hamer 85 , David J. Harris 86 , Rhett D. Harrison 87 , Andrew Hector 88 , Andreas Hemp 89 , Bruno Herault 90, 91 , Carlos Gabriel Hidalgo Pizango 63 , Eurídice N. Honorio Coronado 63 , Wannes Hubau 5, 92 , Mohammad Shah Hussain 93 , Faridah‐Hanum Ibrahim 94 , Nobuo Imai 95 , Carlos A. Joly 3 , Shijo Joseph 96 , Anitha K 97 , Kuswata Kartawinata 98, 99 , Justin Kassi 100 , Timothy J. Killeen 23 , Kanehiro Kitayama 101 , Bente Bang Klitgård 102 , Robert Kooyman 103, 104 , Nicolas Labrière 105 , Eileen Larney 106, 107 , Yves Laumonier 108 , Susan G. Laurance 109 , William F. Laurance 109 , Michael J. Lawes 110 , Aurora Levesley 5 , Janvier Lisingo 111 , Thomas Lovejoy 112 , Jon C. Lovett 5, 113 , Xinghui Lu 114 , Anne Mette Lykke 115 , William E. Magnusson 59 , Ni Putu Diana Mahayani 116 , Yadvinder Malhi 32 , Asyraf Mansor 117, 118 , Jose Luis Marcelo Peña 119, 120 , Ben H. Marimon‐Junior 121 , Andrew R. Marshall 122, 123, 124 , Karina Melgaco 5 , Casimiro Mendoza Bautista 125 , Vianet Mihindou 126, 127 , Jérôme Millet 128 , William Milliken 129 , D. Mohandass 130 , Abel Lorenzo Monteagudo Mendoza 131 , Badru Mugerwa 132 , Hidetoshi Nagamasu 133 , Laszlo Nagy 3 , Naret Seuaturien 134 , Marcelo T. Nascimento 135 , David A. Neill 136 , Luiz Menini Neto 137 , Rueben Nilus 138 , Mario Percy Núñez Vargas 131 , Eddy Nurtjahya 139 , R. Nazaré O. Araújo 140 , Onrizal Onrizal 141 , Walter A. Palacios 142 , Sonia Palacios‐Ramos 143 , Marc Parren 39 , Ekananda Paudel 144 , Paulo S. Morandi 145 , R. Toby Pennington 86, 146 , Georgia Pickavance 5 , John J. Pipoly 147 , Nigel C. A. Pitman 148 , Erny Poedjirahajoe 116 , Lourens Poorter 39 , John R. Poulsen 54 , P. Rama Chandra Prasad 149 , Adriana Prieto 150 , Jean‐Philippe Puyravaud 62 , Lan Qie 151 , Carlos A. Quesada 152 , Hirma Ramírez‐Angulo 153 , Jean Claude Razafimahaimodison 154 , Jan Meindert Reitsma 155 , Edilson J. Requena‐Rojas 156 , Zorayda Restrepo Correa 157 , Carlos Reynel Rodriguez 143 , Anand Roopsind 158 , Francesco Rovero 159, 160 , Andes Rozak 161 , Agustín Rudas Lleras 150 , Ervan Rutishauser 162 , Gemma Rutten 69 , Ruwan Punchi‐Manage 163 , Rafael P. Salomão 13, 164 , Hoang Van Sam 165 , Swapan Kumar Sarker 166 , Manichanh Satdichanh 167, 168 , Juliana Schietti 152 , Christine B. Schmitt 169, 170 , Beatriz Schwantes Marimon 121 , Feyera Senbeta 171 , Lila Nath Sharma 172 , Douglas Sheil 173 , Rodrigo Sierra 174 , Javier E. Silva‐Espejo 175 , Marcos Silveira 176 , Bonaventure Sonké 177 , Marc K. Steininger 178 , Robert Steinmetz 134 , Tariq Stévart 179 , Raman Sukumar 180, 181 , Aisha Sultana 93 , Terry C. H. Sunderland 182, 183 , Hebbalalu Satyanarayana Suresh 180, 181 , Jianwei Tang 184 , Edmund Tanner 185 , Hans Steege 186, 187 , John W. Terborgh 188, 189 , Ida Theilade 190 , Jonathan Timberlake 191 , Armando Torres‐Lezama 192 , Peter Umunay 193 , María Uriarte 194 , Luis Valenzuela Gamarra 195 , Martin Bult 196 , Peter Hout 197 , Rodolfo Vasquez Martinez 198 , Ima Célia Guimarães Vieira 13 , Simone A. Vieira 199 , Emilio Vilanova 200 , Jeanneth Villalobos Cayo 201 , Ophelia Wang 202 , Campbell O. Webb 203 , Edward L. Webb 204 , Lee White 126, 205, 206 , Timothy J. S. Whitfeld 207 , Serge Wich 208, 209 , Simon Willcock 210 , Susan K. Wiser 211 , Kenneth R. Young 212 , Rahmad Zakaria 117 , Runguo Zang 213 , Charles E. Zartman 59 , Irié Casimir Zo‐Bi 91 , Henrik Balslev 2
Affiliation  

Aim: Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location: Tropical and subtropical moist forests. Time period: Current. Major taxa studied: Palms (Arecaceae). Methods: We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co-occurring non-palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results: On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long-term climate stability. Life-form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non-tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above-ground biomass, but the magnitude and direction of the effect require additional work. Conclusions: Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests.

中文翻译:

全球丰富的棕榈树

目标:棕榈树是热带生态系统中标志性的、多样的且通常丰富的组成部分,可提供许多生态系统服务。作为单子叶植物,棕榈树在进化上、形态上和生理上都与其他树木不同,这些差异对生态系统服务(例如碳固存和储存)以及对气候变化的响应具有重要影响。我们量化了棕榈树相对丰度的全球模式,以帮助提高对热带森林的了解并减少气候变化下这些生态系统的不确定性。位置:热带和亚热带湿润森林。时间段:当前。研究的主要分类群:棕榈科(Arecaceae)。方法:我们组装了一个包含 2,548 个森林地块(占地 1,191 公顷)和量化的棕榈树(即,≥ 10 cm 的胸高直径)相对于同时出现的非棕榈树的丰度。我们比较了生物地理领域中棕榈树的相对丰度,并测试了与古气候稳定性、当前气候、土壤条件和森林结构指标的关联。结果:平均而言,新热带地区和其他生物地理领域之间的棕榈树相对丰度高出五倍以上。新热带地区以外的大多数地区没有棕榈树,但在新热带地区的 80% 以上存在。与长期气候稳定性指标相比,棕榈树的相对丰度与当地条件(例如,更高的年平均降水量、更低的土壤肥力、更浅的地下水位和更低的地块平均木材密度)更密切相关。生命形式的多样性也影响了模式;新热带以外的棕榈组合包括许多非树(例如攀缘)棕榈。最后,我们表明棕榈树可以影响地上生物量的估计,但影响的大小和方向需要额外的工作。结论: 棕榈树不仅是典型的热带植物,而且绝大多数是新热带植物。了解棕榈树对生物量估算和碳循环的贡献的未来工作将在新热带森林中尤为重要。
更新日期:2020-07-08
down
wechat
bug