当前位置: X-MOL 学术Electron. J. Biotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biosynthetic L-tert-leucine using Escherichia coli co-expressing a novel NADH-dependent leucine dehydrogenase and a formate dehydrogenase
Electronic Journal of Biotechnology ( IF 2.3 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.ejbt.2020.07.001
Longxing Wang , Wenjun Zhu , Zhen Gao , Hua Zhou , Fei Cao , Min Jiang , Yan Li , Honghua Jia , Ping Wei

Abstract Background L-tert-Leucine has been widely used in pharmaceutical, chemical, and other industries as a vital chiral intermediate. Compared with chemical methods, enzymatic methods to produce L-tert-leucine have unparalleled advantages. Previously, we found a novel leucine dehydrogenase from the halophilic thermophile Laceyella sacchari (LsLeuDH) that showed good thermostability and great potential for the synthesis of L-tert-leucine in the preliminary study. Hence, we manage to use the LsLeuDH coupling with a formate dehydrogenase from Candida boidinii (CbFDH) in the biosynthesis of L-tert-leucine through reductive amination in the present study. Result The double-plasmid recombinant strain exhibited higher conversion than the single-plasmid recombinant strain when resting cells cultivated in shake flask for 22 h were used. Under the optimized conditions, the double-plasmid recombinant E. coli BL21 (pETDute-FDH-LDH, pACYCDute-FDH) transformed 1 mol·L-1 trimethylpyruvate (TMP) completely into L-tert-leucine with greater than 99.9% ee within 8 h. Conclusions The LsLeuDH showed great ability to biosynthesize L-tert-leucine. In addition, it provided a new option for the biosynthesis of L-tert-leucine. How to cite Wang L, Zhu W, Gao Z, et al. Biosynthetic L-tert-leucine using Escherichia coli co-expressing a novel NADH-dependent leucine dehydrogenase and a formate dehydrogenase. Electron J Biotechnol 2020;47. https://doi.org/10.1016/j.ejbt.2020.07.001

中文翻译:

使用大肠杆菌共表达新型 NADH 依赖性亮氨酸脱氢酶和甲酸脱氢酶的生物合成 L-叔亮氨酸

摘要 背景 L-叔亮氨酸作为重要的手性中间体被广泛应用于制药、化工等行业。与化学方法相比,酶法生产L-叔亮氨酸具有无可比拟的优势。此前,我们从嗜盐嗜热菌Laceyella sacchari (LsLeuDH) 中发现了一种新型亮氨酸脱氢酶,在初步研究中显示出良好的热稳定性和巨大的L-叔亮氨酸合成潜力。因此,我们设法在本研究中通过还原胺化在 L-叔亮氨酸的生物合成中使用 LsLeuDH 与来自假丝酵母 (CbFDH) 的甲酸脱氢酶偶联。结果双质粒重组菌株在摇瓶中培养22 h的静息细胞转化率高于单质粒重组菌株。在优化条件下,双质粒重组大肠杆菌BL21(pETDute-FDH-LDH,pACYCDute-FDH)将1 mol·L-1三甲基丙酮酸(TMP)完全转化为L-叔亮氨酸,其中ee大于99.9%。 8 小时。结论 LsLeuDH显示出很强的生物合成L-叔亮氨酸的能力。此外,它为L-叔亮氨酸的生物合成提供了新的选择。如何引用 Wang L, Zhu W, Gao Z, et al. 使用大肠杆菌共表达新型 NADH 依赖性亮氨酸脱氢酶和甲酸脱氢酶的生物合成 L-叔亮氨酸。电子 J 生物技术 2020;47。https://doi.org/10.1016/j.ejbt.2020.07.001 结论 LsLeuDH显示出很强的生物合成L-叔亮氨酸的能力。此外,它为L-叔亮氨酸的生物合成提供了新的选择。如何引用 Wang L, Zhu W, Gao Z, et al. 使用大肠杆菌共表达新型 NADH 依赖性亮氨酸脱氢酶和甲酸脱氢酶的生物合成 L-叔亮氨酸。电子 J 生物技术 2020;47。https://doi.org/10.1016/j.ejbt.2020.07.001 结论 LsLeuDH显示出很强的生物合成L-叔亮氨酸的能力。此外,它为L-叔亮氨酸的生物合成提供了新的选择。如何引用 Wang L, Zhu W, Gao Z, et al. 使用大肠杆菌共表达新型 NADH 依赖性亮氨酸脱氢酶和甲酸脱氢酶的生物合成 L-叔亮氨酸。电子 J 生物技术 2020;47。https://doi.org/10.1016/j.ejbt.2020.07.001
更新日期:2020-09-01
down
wechat
bug